there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
Modulus of elasticity will be 2.06*10^5 N/mm2
Youngs Modulus
expansion
It is around 40 GPa.
About 0.6 to 1.1 Mpa
Yes, Young's Modulus is the same as Modulus of Elasticity.
Yes, the modulus of elasticity is the same as Young's modulus.
Young's modulus
the dimensions of Young's Modulus of Elasticity = (M).(L)^(-1).(T)^(-2)
Young's modulus
Yes, the tensile modulus is the same as the modulus of elasticity. Both terms refer to a material's ability to resist deformation under tensile stress.
Modulus of elasticity will be 2.06*10^5 N/mm2
K(bulk modulus of elasticity)=-{[Pressure x volume]/change in volume}
The modulus of elasticity is the slope of the linear portion of the curve (the elastic region).
30000000psi
the world
Young's Modulus and Modulus of Elasticity are both measures of a material's stiffness, but they are not the same. Young's Modulus specifically refers to the ratio of stress to strain in a material under tension or compression, while Modulus of Elasticity is a more general term that can refer to the stiffness of a material under various types of stress. In terms of measuring a material's stiffness, both Young's Modulus and Modulus of Elasticity provide valuable information. Young's Modulus is often used for materials that are linearly elastic, meaning they deform proportionally to the applied stress. Modulus of Elasticity, on the other hand, can be used for a wider range of materials and loading conditions. Overall, both measures are important for understanding a material's stiffness, but the choice of which to use may depend on the specific properties of the material and the type of stress it will be subjected to.