expansion
Modulus of elasticity will be 2.06*10^5 N/mm2
there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
Youngs Modulus
It is around 40 GPa.
About 0.6 to 1.1 Mpa
Yes, Young's Modulus is the same as Modulus of Elasticity.
Yes, the modulus of elasticity is the same as Young's modulus.
Young's modulus
the dimensions of Young's Modulus of Elasticity = (M).(L)^(-1).(T)^(-2)
Young's modulus
Yes, the tensile modulus is the same as the modulus of elasticity. Both terms refer to a material's ability to resist deformation under tensile stress.
Modulus of elasticity will be 2.06*10^5 N/mm2
there are different types of modulus it depends on what types of stress is acting on the material if its direct stress then then there is modulus of elasticity,if tis shear stress then its modulus of rigidity and when its volumetric stress it is bulk modulus and so on
K(bulk modulus of elasticity)=-{[Pressure x volume]/change in volume}
The modulus of elasticity is the slope of the linear portion of the curve (the elastic region).
The modulus of elasticity (also known as Young's modulus) is calculated using the formula E = stress/strain, where E is the modulus of elasticity, stress is the force applied per unit area, and strain is the resulting deformation or elongation.
30000000psi