20 ohms
No. Resistivity is a material constant, defined for a standard size of material. For another size of material, it can be calculated. Resistivity is the same for any piece of material; resistance can change.
Resistance is the value of a given wire in ohm but resistivity is value of the material with which that wire is made in ohm meter. R = rho * L / A Here rho is resistivity and R is resistance. L is the length of the wire and A is area of cross section
Resistivity is a property of the material only, not of the dimensions of the wire. The resistance of a wire is the resistivity times the length divided by the cross-section area. So a long wire has more resistance, a thicker wire has less resistance, even if they are both made of copper with the same resistivity.
Electrical resistivity (also known as resistivity, specific electrical resistance, or volume resistivity) quantifies how strongly a given material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electric charge. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is theohm⋅metre (Ω⋅m)It defined as resistance offerde by a unit length and cross section area conductor.It depends on material used.it depends on relexation time and temperature.
Resistance R =p(L /A)i,e Resistance(R) of a conductor will be directly proportional to its length(L) ==> if the length of the conductor increases its resistance also will increase.i,e Resistance(R) of a conductor is inversely proportional to its cross section area(A) ==> if the Area of the conductor increases its resistance also will decrease.
No. Resistivity is a material constant, defined for a standard size of material. For another size of material, it can be calculated. Resistivity is the same for any piece of material; resistance can change.
I think the equation you are looking for is Resistance (ohms) = Resistivity * Length / Area or R=p*L/A. This is the resistance of a circular wire with cross-section of A, length of L, and material with resistivity p. So to get area: Area = Resistivity * Length / Resistance.
Resistance is the value of a given wire in ohm but resistivity is value of the material with which that wire is made in ohm meter. R = rho * L / A Here rho is resistivity and R is resistance. L is the length of the wire and A is area of cross section
No. Resistance does.
Resistivity is a property of the material only, not of the dimensions of the wire. The resistance of a wire is the resistivity times the length divided by the cross-section area. So a long wire has more resistance, a thicker wire has less resistance, even if they are both made of copper with the same resistivity.
It can be because of the material used.As we know R=PL/A where R=resistance P=resistivity of the material used L=length of the conductor A=area of cross section of the conductor
Double the length is double the resistance. Resistance of a wire is the resistivity of the material, times the length, divided by the cross-section area.
Nothing. Resistivity is defined as specific resistance. However, Resistivity is different from resistance.Answer:Resistance is the opposition offered by the material which is of any shape and size whereas resistivity is the resistance offered by the material with unit area of cross section and unit length.Therefore, resistance varies depending upon shape and size of the material while resistivity is constant for a particular material.
Electrical resistivity (also known as resistivity, specific electrical resistance, or volume resistivity) quantifies how strongly a given material opposes the flow of electric current. A low resistivity indicates a material that readily allows the movement of electric charge. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is theohm⋅metre (Ω⋅m)It defined as resistance offerde by a unit length and cross section area conductor.It depends on material used.it depends on relexation time and temperature.
Temperature, Length of wire, Area of the cross-section of wire and nature of the material.
'Resistivity' is defined as the resistance of a unit length of a material of uniform cross section. In SI, its the resistance between opposite faces of a metre cube (not a cubic metre -they're different!) and is expressed in ohm metres.
if length is doubled then resistivity increases&when area is doubled resistivity decreases.