30
The acceleration of the human cannonball can be calculated using Newton's second law, which states that Force = mass * acceleration. In this case, the force is 2400N and the mass is 80kg, so the acceleration is 30 m/s^2.
Yes, momentum is always conserved in a system unless acted upon by an external force. When a cannonball is fired, the momentum of the cannonball system as a whole remains constant because the momentum of the cannonball is equal and opposite to the momentum of the recoil of the cannon.
No, a cannonball does not fly straight when fired. The force of gravity will cause the cannonball to follow a parabolic trajectory, curving downward towards the ground due to the effects of gravity. The angle at which the cannon is fired will also affect the trajectory of the cannonball.
A cannonball is fired by a cannon due to the buildup of pressure behind it when ignited. The explosion of gunpowder causes the cannonball to be propelled out of the cannon at high speed. The trajectory and distance the cannonball travels is influenced by factors such as the angle of the cannon and the amount of gunpowder used.
Yes, momentum is conserved in the cannon-cannonball system. When the cannon fires the cannonball, the cannon moves in the opposite direction to conserve momentum. This is based on the principle of conservation of momentum in a closed system.
The acceleration of the human cannonball can be calculated using Newton's second law, which states that Force = mass * acceleration. In this case, the force is 2400N and the mass is 80kg, so the acceleration is 30 m/s^2.
The moon has no atmosphere and has less gravity than the earth. That means that a cannonball fired on the moon will travel further.
Yes, momentum is always conserved in a system unless acted upon by an external force. When a cannonball is fired, the momentum of the cannonball system as a whole remains constant because the momentum of the cannonball is equal and opposite to the momentum of the recoil of the cannon.
No, a cannonball does not fly straight when fired. The force of gravity will cause the cannonball to follow a parabolic trajectory, curving downward towards the ground due to the effects of gravity. The angle at which the cannon is fired will also affect the trajectory of the cannonball.
he was hired and fired on the same day
throught the use of pressure/fire/gun powder
We calculated the trajectory of the cannonball before we fired it.
He got fired! ha! ha! ha!
A cannonball is fired by a cannon due to the buildup of pressure behind it when ignited. The explosion of gunpowder causes the cannonball to be propelled out of the cannon at high speed. The trajectory and distance the cannonball travels is influenced by factors such as the angle of the cannon and the amount of gunpowder used.
The bullet fired from a gun has greater horizontal acceleration. For vertical acceleration, they are both the same.
A stone cannonball can be identified by its round shape, smooth surface, and heavy weight. It may also have markings or indentations from being fired from a cannon.
Yes, momentum is conserved in the cannon-cannonball system. When the cannon fires the cannonball, the cannon moves in the opposite direction to conserve momentum. This is based on the principle of conservation of momentum in a closed system.