Acceleration = (Change in speed)/(Time)
a = (v-u)/t
= (500-1000)/5
= -500/5
= -100
Acceleration is -100 ms-2
To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.
To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. In this case, the final velocity is 20+10 = 30 miles/sec, the initial velocity is 20 miles/sec, and the time is 30 seconds. So, the acceleration of the car is (30 - 20) / 30 = 0.33 miles/sec^2.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Given the initial velocity (A), final velocity (B), and time (8 seconds), you can substitute the values into the formula to find the acceleration.
Assuming you release it from a position of rest, you must multiply the time by the acceleration. The acceleration due to gravity near Earth's surface is approximately 9.8 meters/second squared.
To calculate acceleration, you need to know the initial velocity of the car and its final velocity after 6.8 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time.
That depends on its initial velocity and its acceleration. V1 = V0 + a * t
Acceleration occurs when velocity changes over time. The formula for it is as follows: a = (Vf - Vi) / t a: acceleration (meters/seconds2) Vf: Final velocity (meters/seconds) Vi: Initial Velocity (meters/seconds) t: Time (seconds)
To calculate acceleration between 6 and 9 seconds, you need to find the change in velocity during that time interval and then divide it by the time taken. The formula for acceleration is acceleration = (final velocity - initial velocity) / time. Plug in the velocities at 6 seconds and 9 seconds into the formula to get the acceleration.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. In this case, the final velocity is 20+10 = 30 miles/sec, the initial velocity is 20 miles/sec, and the time is 30 seconds. So, the acceleration of the car is (30 - 20) / 30 = 0.33 miles/sec^2.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Given the initial velocity (A), final velocity (B), and time (8 seconds), you can substitute the values into the formula to find the acceleration.
Acceleration of the arrow is -3m/s2A = (velocity minus initial velocity) / time
Assuming you release it from a position of rest, you must multiply the time by the acceleration. The acceleration due to gravity near Earth's surface is approximately 9.8 meters/second squared.
To calculate the rate of acceleration, you need to know the change in velocity of the basketball over the 4 seconds. If you have the initial and final velocities, you can use the formula: acceleration = (final velocity - initial velocity) / time. For example, if the basketball's initial velocity is 0 m/s and its final velocity is 8 m/s, the acceleration would be (8 m/s - 0 m/s) / 4 s = 2 m/s².
To find the distance traveled, we can use the formula: distance = initial velocity * time + 0.5 * acceleration * time^2. The initial velocity is 75 miles per second, the final velocity is 145 miles per second, and the time is 15 seconds. The acceleration can be found using the formula: acceleration = (final velocity - initial velocity) / time. Plug in the values to find the acceleration and then calculate the distance traveled in 15 seconds.
The sprinter's velocity at 1.2 seconds can be calculated using the formula: velocity = initial velocity + acceleration × time. Given the initial velocity is 0 m/s, acceleration is 2.3 m/s^2, and time is 1.2 seconds, the velocity at 1.2 seconds would be 2.76 m/s.
The acceleration of the car can be calculated using the formula: acceleration = (final velocity - initial velocity) / time. Converting the initial velocity of 0 km/hr to m/s and final velocity of 60 km/hr to m/s, and plugging in the values, we get the acceleration to be 2 m/s^2.