Time period = 1 / frequency.
Frequency = 1 / time period.
RECIPROCAL
Time period and frequency of a wave has reciprocal relationship.i.e
f=1/T or T=1/f
The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.
The relationship between amplitude and frequency in a wave is that amplitude refers to the height or intensity of a wave, while frequency refers to the number of wave cycles that occur in a given time period. In general, higher amplitude waves have greater energy and intensity, while higher frequency waves have more cycles occurring in a shorter time period.
Yes, as the frequency of a set of waves increases, the period of each wave decreases. This is because frequency and period are inversely related - frequency is the number of wave cycles occurring in a unit of time, while period is the time it takes for one wave cycle to complete.
The frequency of a wave refers to how many times it repeats in a given time period, while the amplitude is the height of the wave. In general, higher frequency waves have higher amplitudes. This means that as the frequency of a wave increases, the amplitude also tends to increase. This relationship is important in understanding how waves behave and interact with each other.
In physics, frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in a given time, while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: frequency 1/period, or period 1/frequency. This means that as the frequency of a wave increases, its period decreases, and vice versa.
The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.
The relationship between amplitude and frequency in a wave is that amplitude refers to the height or intensity of a wave, while frequency refers to the number of wave cycles that occur in a given time period. In general, higher amplitude waves have greater energy and intensity, while higher frequency waves have more cycles occurring in a shorter time period.
Yes, as the frequency of a set of waves increases, the period of each wave decreases. This is because frequency and period are inversely related - frequency is the number of wave cycles occurring in a unit of time, while period is the time it takes for one wave cycle to complete.
period
In physics, frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in a given time, while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: frequency 1/period, or period 1/frequency. This means that as the frequency of a wave increases, its period decreases, and vice versa.
The frequency of a wave refers to how many times it repeats in a given time period, while the amplitude is the height of the wave. In general, higher frequency waves have higher amplitudes. This means that as the frequency of a wave increases, the amplitude also tends to increase. This relationship is important in understanding how waves behave and interact with each other.
The relationship between frequency and wavelength for electromagnetic waves is inverse: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency of the wave.
increase. The frequency of a wave is inversely proportional to its period, meaning that as the period decreases, the frequency increases. The relationship between frequency and period is given by the formula: frequency = 1 / period.
Frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in one second, measured in Hertz (Hz), while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: Period 1 / Frequency. This means that as the frequency of a wave increases, the period decreases, and vice versa.
frequency. Period is the time it takes for one complete cycle of the wave, while frequency is the number of cycles per second. The relationship between period and frequency is that period = 1/frequency.
Increase decrease. The frequency MUST decrease.
The energy of an electromagnetic wave is directly proportional to its frequency and inversely proportional to its wavelength. Higher frequency waves carry more energy than lower frequency waves. This relationship is described by the equation E = hν, where E is energy, h is Planck's constant, and ν is frequency.