answersLogoWhite

0

Time period = 1 / frequency.

Frequency = 1 / time period.

RECIPROCAL
Time period and frequency of a wave has reciprocal relationship.i.e

f=1/T or T=1/f

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between amplitude and frequency in a wave?

The relationship between amplitude and frequency in a wave is that amplitude refers to the height or intensity of a wave, while frequency refers to the number of wave cycles that occur in a given time period. In general, higher amplitude waves have greater energy and intensity, while higher frequency waves have more cycles occurring in a shorter time period.


What is the relationship between frequency and energy in the context of electromagnetic waves?

The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.


As the frequency of a set of waves increases do the period of each wave decreases?

Yes, as the frequency of a set of waves increases, the period of each wave decreases. This is because frequency and period are inversely related - frequency is the number of wave cycles occurring in a unit of time, while period is the time it takes for one wave cycle to complete.


What is the relationship between the frequency and amplitude in a wave, and how does the frequency affect the amplitude in terms of wave properties?

The frequency of a wave refers to how many times it repeats in a given time period, while the amplitude is the height of the wave. In general, higher frequency waves have higher amplitudes. This means that as the frequency of a wave increases, the amplitude also tends to increase. This relationship is important in understanding how waves behave and interact with each other.


What is the relationship between frequency and period in physics?

In physics, frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in a given time, while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: frequency 1/period, or period 1/frequency. This means that as the frequency of a wave increases, its period decreases, and vice versa.

Related Questions

What is the relationship between amplitude and frequency in a wave?

The relationship between amplitude and frequency in a wave is that amplitude refers to the height or intensity of a wave, while frequency refers to the number of wave cycles that occur in a given time period. In general, higher amplitude waves have greater energy and intensity, while higher frequency waves have more cycles occurring in a shorter time period.


What is the relationship between frequency and energy in the context of electromagnetic waves?

The relationship between frequency and energy in electromagnetic waves is that higher frequency waves have higher energy. This means that as the frequency of an electromagnetic wave increases, so does its energy.


As the frequency of a set of waves increases do the period of each wave decreases?

Yes, as the frequency of a set of waves increases, the period of each wave decreases. This is because frequency and period are inversely related - frequency is the number of wave cycles occurring in a unit of time, while period is the time it takes for one wave cycle to complete.


If the of waves increase its frequency must decrease?

period


What is the relationship between the frequency and amplitude in a wave, and how does the frequency affect the amplitude in terms of wave properties?

The frequency of a wave refers to how many times it repeats in a given time period, while the amplitude is the height of the wave. In general, higher frequency waves have higher amplitudes. This means that as the frequency of a wave increases, the amplitude also tends to increase. This relationship is important in understanding how waves behave and interact with each other.


What is the relationship between frequency and period in physics?

In physics, frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in a given time, while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: frequency 1/period, or period 1/frequency. This means that as the frequency of a wave increases, its period decreases, and vice versa.


What is the relationship between frequency and wavelength for electromagnetic waves?

The relationship between frequency and wavelength for electromagnetic waves is inverse: as frequency increases, wavelength decreases, and vice versa. This relationship is described by the equation λ = c/f, where λ is the wavelength, c is the speed of light, and f is the frequency of the wave.


If the period of wave decreases its frequency must?

increase. The frequency of a wave is inversely proportional to its period, meaning that as the period decreases, the frequency increases. The relationship between frequency and period is given by the formula: frequency = 1 / period.


If a frequency of a wave increases what will happen?

Increase decrease. The frequency MUST decrease.


What is the relationship between frequency and period?

Frequency and period are inversely related. Frequency is the number of cycles of a wave that occur in one second, measured in Hertz (Hz), while period is the time it takes for one complete cycle to occur. The relationship between frequency and period can be described by the equation: Period 1 / Frequency. This means that as the frequency of a wave increases, the period decreases, and vice versa.


What is the relationship between the wavelengh frequency and energy transmitted in electromagnetic waves?

The energy of an electromagnetic wave is directly proportional to its frequency and inversely proportional to its wavelength. Higher frequency waves carry more energy than lower frequency waves. This relationship is described by the equation E = hν, where E is energy, h is Planck's constant, and ν is frequency.


What is the relationship between length and wave frequency?

Frequency is inversely proportional to the wave length, thus saying the shorter the wave length the higher the frequency and vice versa.The frequency is the number of waves within a time period. As the frequency within that time period increases, the number of waves increases, therefore the width of each wave (wavelength) within that time period has to decrease. Therefore:As the wave length increases, the frequency decreasesAs the wave length decreases, the frequency increases