As frequency increasese the period decreases since they are inversely related to each other with the relationship f = 1/T.
If the period increases, the frequency decreases.The product of (frequency) times (period) is always ' 1 '.
No, frequency and period are inversely related. As the period of a wave increases, the frequency decreases. Frequency is the number of wave cycles that pass a point in a given time, while period is the time it takes for a wave cycle to complete.
When you decrease the wave period, the wavelength becomes shorter and the frequency increases. This results in the wave moving faster.
When the period of a wave decreases, the frequency of the wave increases. This is because frequency and period are inversely related - as one increases, the other decreases. So, a shorter period corresponds to a higher frequency.
The frequency of a wave decreases when its period increases. The frequency (f) of a wave is the number of cycles (or vibrations or oscillations) per unit time. The SI units of frequency is the inverse seconds or hertz (Hz). The period (T) of a wave is the time it takes to complete a cycle. The frequency and period have the following relationship: frequency= 1/period f= 1/T so if the period increases, the frequency decreases.
If the period increases, the frequency decreases.The product of (frequency) times (period) is always ' 1 '.
No, frequency and period are inversely related. As the period of a wave increases, the frequency decreases. Frequency is the number of wave cycles that pass a point in a given time, while period is the time it takes for a wave cycle to complete.
When you decrease the wave period, the wavelength becomes shorter and the frequency increases. This results in the wave moving faster.
The period decreases.
When the period of a wave decreases, the frequency of the wave increases. This is because frequency and period are inversely related - as one increases, the other decreases. So, a shorter period corresponds to a higher frequency.
The frequency of a wave decreases when its period increases. The frequency (f) of a wave is the number of cycles (or vibrations or oscillations) per unit time. The SI units of frequency is the inverse seconds or hertz (Hz). The period (T) of a wave is the time it takes to complete a cycle. The frequency and period have the following relationship: frequency= 1/period f= 1/T so if the period increases, the frequency decreases.
Yes, as the frequency of a set of waves increases, the period of each wave decreases. This is because frequency and period are inversely related - frequency is the number of wave cycles occurring in a unit of time, while period is the time it takes for one wave cycle to complete.
The period and frequency of a wave are inversely related, i.e. the period is the time it takes for wave to go through a cycle, and the frequency is the number of cycles in a certain time period. For example, a wave with a period of 0.5 seconds would have a frequency of 2 per second. Since these properties are the inverse of each other, than they will be opposite when changing. If the period decreases (i.e. gets shorter, faster) than the frequency increases. Or vice versa.
As wavelength increases the frequency decreases.
frequency
True. The period of a wave is inversely proportional to its frequency. That means as the frequency of a wave increases, the period of the wave decreases proportionally.
The period decreases.