The quick and dirty: Because the points along the equator are the earth's surface points, generally speaking, that are farthest from the axis of rotation. It is similar to this idea. Imagine that you are spinning a bicycle wheel on its axle. Points along the tire surface are moving more rapidly than points on a spoke very close to the axle. The points on the tire are covering a longer distance over the same period of time.
To determine the maximum height reached by a projectile, you can use the formula: maximum height (initial vertical velocity)2 / (2 acceleration due to gravity). This formula calculates the height based on the initial vertical velocity of the projectile and the acceleration due to gravity.
If acceleration is equal to gravity (approximately 9.8 m/s^2 on Earth), then the weight of the object would be equal to its mass multiplied by the acceleration due to gravity. This relationship is described by the formula Weight = mass x acceleration due to gravity.
acceleration due to gravity of earth is 9.8ms-2
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
Near Earth, the acceleration due to gravity is approximately 9.8 meters per square second. It varies slightly from place to place, though.
To determine the maximum height reached by a projectile, you can use the formula: maximum height (initial vertical velocity)2 / (2 acceleration due to gravity). This formula calculates the height based on the initial vertical velocity of the projectile and the acceleration due to gravity.
If acceleration is equal to gravity (approximately 9.8 m/s^2 on Earth), then the weight of the object would be equal to its mass multiplied by the acceleration due to gravity. This relationship is described by the formula Weight = mass x acceleration due to gravity.
acceleration due to gravity of earth is 9.8ms-2
Acceleration due to gravity on Saturn = 11.171 m/s2 (9.807 m/s2 on Earth)
I suppose you are asking about what forces change when acceleration due to gravity changes. In this case, the formula for forces concerning acceleration due to gravity is as such: fg=mg. When acceleration due to gravity(g) changes, it affects the force of gravity which is also known as the weight of the object. This is shown as fg.
No, acceleration due to gravity does not change the weight of an object. Weight is determined by the mass of the object and the acceleration due to gravity in that location. The acceleration due to gravity affects the force with which an object is pulled toward the center of the Earth, leading to its weight.
Acceleration due to gravityThe acceleration produced in the motion of a body under gravity is called Acceleration.
The period of a pendulum (in seconds) is 2(pi)√(L/g), where L is the length and g is the acceleration due to gravity. As acceleration due to gravity increases, the period decreases, so the smaller the acceleration due to gravity, the longer the period of the pendulum.
The symbol for acceleration due to gravity is "g."
Ganymede's acceleration due to gravity is 1.428 m/s².
Acceleration due to gravity means the force due to weight of an object which increases due to the gravitational pull of the earth.