The gravitational potential energy can be calculated using the formula: GPE = mgh, where m is the mass (120 kg), g is the acceleration due to gravity (9.81 m/s^2), and h is the height (12 m). Plugging in the values, we get GPE = 120 kg * 9.81 m/s^2 * 12 m = 14,065.6 Joules.
Gravitational potential is a scalar quantity. It represents the amount of energy per unit mass at a point in a gravitational field. When considering gravitational potential, only the magnitude of the potential is important, not its direction.
The maximum energy conversion from gravitational potential energy to kinetic energy occurs when all of the initial potential energy of the mass is converted to kinetic energy. This means that the maximum amount of energy the mass can change from gravitational potential energy to kinetic energy is equal to the initial potential energy of the mass.
It would be dangerous when a boulder is atop a cliff and falls down. The gravity would pull it down. Thus making the potential energy dangerous, for if it had no potential energy, it would not fall. Thus creating no need for the "Watch for falling rock" signs.
Well gravitational potential energy is potential energy that depends on the height of an object so an object would have gravitational potential energy when ever it's of the ground or at a high height (it doesn't have to be very high) for example if you lift up a ball it has the potential to fall or if your climbing a mountain you have gravitational potential energy.
An object gains gravitational potential energy when it is lifted against the force of gravity. The amount of potential energy an object has depends on its height above a reference point, typically the ground. The higher the object is lifted, the greater its gravitational potential energy.
Gravitational potential is a scalar quantity. It represents the amount of energy per unit mass at a point in a gravitational field. When considering gravitational potential, only the magnitude of the potential is important, not its direction.
When you go up or down.
Gravitational energy is the potential energy associated with gravitational force. If an object falls from one point to another point inside a gravitational field, the force of gravity will do positive work on the object, and the gravitational potential energy will decrease by the same amount.
The maximum energy conversion from gravitational potential energy to kinetic energy occurs when all of the initial potential energy of the mass is converted to kinetic energy. This means that the maximum amount of energy the mass can change from gravitational potential energy to kinetic energy is equal to the initial potential energy of the mass.
Mass, gravity, height.
Yes. Mass is one of the variables (mass, gravity and height) for which gravitational potential energy is the product (meaning the multiplication of), so increasing mass will increase the gravitational potential energy in direct proportion.
It would be dangerous when a boulder is atop a cliff and falls down. The gravity would pull it down. Thus making the potential energy dangerous, for if it had no potential energy, it would not fall. Thus creating no need for the "Watch for falling rock" signs.
Well gravitational potential energy is potential energy that depends on the height of an object so an object would have gravitational potential energy when ever it's of the ground or at a high height (it doesn't have to be very high) for example if you lift up a ball it has the potential to fall or if your climbing a mountain you have gravitational potential energy.
The mass, height and the force of gravity at the location.
popiseed muffins rock!
Whenever it is at its lowest position.
An object gains gravitational potential energy when it is lifted against the force of gravity. The amount of potential energy an object has depends on its height above a reference point, typically the ground. The higher the object is lifted, the greater its gravitational potential energy.