No. The magnitude of a vector can't be less than any component.
No, for a vector to be zero, all of its components must be zero. If only one component is not zero, then the vector itself cannot be zero.
No. In order for the magnitude of a vector to be zero, the magnitude of all of its components will need to be zero.This answer ignores velocity and considers only the various N-axis projections of a vector. This is because direction is moot if magnitude is zero.
No. The value of a vector is determined by the square root of the sum of its components squared. Value= Sqrt(x^2 + y^2 + z^2). The components of real vectors are real numbers and the square of a real number is a positive number. The sum of a positive and zeros is not zero but a positive. Vectors were created by William Rowan Hamilton in 1843 when he created Quaternions. Quaternions consist of a real number and three vector numbers. The vectors are designated by i, j, k where i^2=j^2=k^2=ijk= -1. The square of a vector is a negative one . This used to be called an imaginary number. The components of vectors are real numbers, like v=2i + 3j -5k, the value of v = sqrt(4 + 9 + 25)=sqrt(38). Complex numbers are a subset of quaternions involving one vector "i".
(Magnitude of the vector)2 = sum of the squares of the component magnituides Let's say the components are 'A' and 'B', and the magnitude of the vector is 'C'. Then C2 = A2 + B2 You have said that C = A, so C2 = C2 + B2 B2 = 0 B = 0 The other component is zero.
Yes, two vectors with different magnitudes can be combined to give a vector sum of zero if they are in opposite directions and their magnitudes are appropriately chosen. The magnitude of one vector must be equal to the magnitude of the other vector, but in the opposite direction, to result in a vector sum of zero.
No.
No.
No. The magnitude of a vector can't be less than any component.
No, if one of the rectangular components of a vector is not zero, the magnitude of the vector cannot be zero. The magnitude of a vector is calculated using the Pythagorean theorem, which involves all its components. Therefore, if at least one component has a non-zero value, the overall magnitude will also be non-zero.
Yes. A vector in two dimensions is broken into two components, a vector in three dimensions broken into three components, etc... If the value of all but one component of a vector equal zero then the magnitude of the vector is equal to the non-zero component.
Yes, the component of a non-zero vector can be zero. A non-zero vector can have one or more components equal to zero while still having a non-zero magnitude overall. For example, in a two-dimensional space, the vector (0, 5) has a zero component in the x-direction but is still a non-zero vector since its y-component is non-zero.
No, for a vector to be zero, all of its components must be zero. If only one component is not zero, then the vector itself cannot be zero.
No. In order for the magnitude of a vector to be zero, the magnitude of all of its components will need to be zero.This answer ignores velocity and considers only the various N-axis projections of a vector. This is because direction is moot if magnitude is zero.
Huh?I have been kicking around your question in my mind for five minutes trying to figure out an answer or a way to edit your question into an unambiguous form, but I'm stumped. I don't know what you mean by "zero component along a line."If you look at the representation of a vector on paper using a Cartesian coordinate system -- in other words, one using x and y axes -- the orthogonal components of the vector are the projections of the vector on the x and y axes. If the vector is parallel to one of the axes, its projection on the other axis will be zero. But the vector will still have a non-zero magnitude. Its entire magnitude will project on only one axis.But a vector must have magnitude AND direction. And if it has zero magnitude, its direction cannot be determined.Still trying to make heads or tails out of your question.......If you draw a random vector on a Cartesian grid, it will have an x component and a y component, which are both projections of the original vector upon the axes. However, it could also be represented by projecting it onto a new set of orthogonal axes -- call them x' and y' -- where the x' axis is oriented to be parallel to the original vector and the y' vector is perpendicular to it. In that case, the x' component will have a magnitude equal to the magnitude of the original vector -- in other words, a non-zero value along a line parallel to the x' axis -- and a zero magnitude in the y' direction.
A vector comprises its components, which are orthogonal. If just one of them has magnitude and direction, then the resultant vector has magnitude and direction. Example:- If A is a vector and Ax is zero and Ay is non-zero then, A=Ax+Ay A=0+Ay A=Ay
No never
No a vector may not have a component greater than its magnitude. When dealing with highschool phyics problems, the magnitude is usually the sum of two or more components and one component will offset the other, causing the magnitude to be less then its component