No.
The angle between vectors A and B must be 90 degrees for the magnitude of A + B to be greater than the magnitude of A - B. At this angle, the maximum difference between the magnitudes of A + B and A - B occurs, maximizing the difference.
No, the statement is incorrect. The sum of two vectors of equal magnitude will not equal the magnitude of either vector. The sum of two vectors of equal magnitude will result in a new vector that is larger than the original vectors due to vector addition. The magnitude of the difference between the two vectors will be smaller than the magnitude of either vector.
yes,if the components are making angle 0<=theta<=90 no ,the magnitude of vector can never attain a negative value |a|=square root of both components which always gives a positive value
When two vectors are in opposite directions, their resultant is the difference between their magnitudes, with the direction of the larger vector. This means the resultant vector points in the direction of the larger vector and its magnitude is the difference between the magnitudes of the two vectors.
The angle between two vectors whose magnitudes add up to be equal to the magnitude of the resultant vector will be 120 degrees. This is known as the "120-degree rule" when adding two vectors of equal magnitude to get a resultant of equal magnitude.
The angle between vectors A and B must be 90 degrees for the magnitude of A + B to be greater than the magnitude of A - B. At this angle, the maximum difference between the magnitudes of A + B and A - B occurs, maximizing the difference.
No, the statement is incorrect. The sum of two vectors of equal magnitude will not equal the magnitude of either vector. The sum of two vectors of equal magnitude will result in a new vector that is larger than the original vectors due to vector addition. The magnitude of the difference between the two vectors will be smaller than the magnitude of either vector.
Scalars are quantities that have magnitude only; they are independent of direction. Vectors have both magnitude and direction. vectors need bold letters to show them.
yes,if the components are making angle 0<=theta<=90 no ,the magnitude of vector can never attain a negative value |a|=square root of both components which always gives a positive value
No.
180 degrees. Then the sum of the two vectors has a magnitude equal to the difference of their individual magnitudes.
none
It is a displacement equal in magnitude to the difference between the two vectors, and in the direction of the larger vector.
-- The minimum magnitude that can result from the combination of two vectors is the difference between their magnitudes. If their magnitudes are different, then they can't combine to produce zero. -- But three or more vectors with different magnitudes can combine to produce a zero magnitude.
When two vectors are in opposite directions, their resultant is the difference between their magnitudes, with the direction of the larger vector. This means the resultant vector points in the direction of the larger vector and its magnitude is the difference between the magnitudes of the two vectors.
The angle between two vectors whose magnitudes add up to be equal to the magnitude of the resultant vector will be 120 degrees. This is known as the "120-degree rule" when adding two vectors of equal magnitude to get a resultant of equal magnitude.
No, the resultant of two equal vectors will have a magnitude that is not equal to the magnitude of the original vectors. When two vectors are added together, the resulting vector will have a magnitude that depends on the angle between the two vectors.