No, a stationary charge particle cannot be accelerated in a magnetic field. In order to be affected by a magnetic field, the charged particle must be moving.
Yes, a magnetic field can accelerate a moving charge through a force known as the Lorentz force.
The motion of a charged particle in a magnetic field will experience a force perpendicular to both the particle's velocity and the magnetic field direction, causing it to move in a circular path. In contrast, in an electric field, the particle will accelerate in the direction of the field. By observing the path of the charged particle, one can determine whether it is in a magnetic field (circular motion) or an electric field (accelerating linear motion).
By placing the stationary charge in a magnetic field that is changing over time, a magnetic force will be induced on the charge, causing it to move. This is known as electromagnetic induction. The moving magnetic field induces an electric field that then exerts a force on the charge, resulting in its movement.
The magnetic field produced by a charge at a point is the force exerted by the charge on a moving charged particle at that point.
In physics, the relationship between energy, charge, and magnetic field is described by the Lorentz force equation. This equation shows how a charged particle moving through a magnetic field experiences a force that is perpendicular to both the particle's velocity and the magnetic field. This force can change the particle's energy and trajectory.
we know that force on a charge in magnetic field F=qvbsinx q-charge v-velocity b-strenth 0f magnetic field x-angle between the motion of chage and the magnetic field as the charge is stationary so v=0 so,F=0 so charge donot fill any force on it.
Stationary charge don't produce a magnetic field. because it has no velocity in it, without flow of electron we can't find electricity and for that we have no magnetic field for a stationary charge. It produce only electric field.
An electric field can created by a presence of a charge particle such as electron or proton. While a magnetic fieldis created due the relative motion of a charge particle with repeat to a stationary observer, motion of the charge particle.
A magnet affects only moving charges due to their magnetic field alignment. Stationary charge particles do not produce a magnetic field of their own and do not interact with magnetic fields in the same way.
A) stationary electric charge B) moving electric charge C) stationary magnet D) a moving magnet
Yes, a magnetic field can accelerate a moving charge through a force known as the Lorentz force.
Yes, a particle used in a particle accelerator must have a charge to be useful in the device. Particle accelerators we use in high energy physics to investigate things all work by applying a moving or shifting magnetic field to accelerate charged particles. We speed these particles up by repeatedly "hitting" them with a magnetic field. Uncharged particles will not respond to this, and canot be used in the devices.
if charge particle is in motion ,then it has magnetic field
The motion of a charged particle in a magnetic field will experience a force perpendicular to both the particle's velocity and the magnetic field direction, causing it to move in a circular path. In contrast, in an electric field, the particle will accelerate in the direction of the field. By observing the path of the charged particle, one can determine whether it is in a magnetic field (circular motion) or an electric field (accelerating linear motion).
By placing the stationary charge in a magnetic field that is changing over time, a magnetic force will be induced on the charge, causing it to move. This is known as electromagnetic induction. The moving magnetic field induces an electric field that then exerts a force on the charge, resulting in its movement.
The force on a charge by a magnetic field is given by F = Bq v sin@ v - the speed of the charged particle with charge q. B - magnetic field induction in tesla. @ is the angle between the velocity vector and magnetic field vector. As dipole is stationary, the speed of charges is zero. So the force = 0 Hence the result.
The magnetic field produced by a charge at a point is the force exerted by the charge on a moving charged particle at that point.