Hot magma rises from the core (5000 degrees celsius), it cools as it leaves it leaves the core, and sinks. As more hot magma comes up, it forms a current, a convection current! This is believed to be the motion behind a plate tectonics.
Yes, convection currents in the Earth's mantle connect the poles to the equator. These currents play a crucial role in the movement of tectonic plates, which in turn influences volcanic activity and earthquakes. The heat from the Earth's core is the driving force behind these convection currents.
Convection currents in the Earth's mantle drive the movement of tectonic plates, resulting in earthquakes and volcanic activity.
When heat is removed from a fluid, convection currents will slow down and eventually stop. This is because convection currents are driven by temperature differences within the fluid, and when the fluid reaches a uniform temperature, the driving force for convection diminishes.
the earth's convection currents cause continental drift.
Convection currents can be found in real-world examples such as in the atmosphere, where they drive weather patterns and wind movements. In the ocean, convection currents play a role in the circulation of water and nutrient distribution. In the Earth's mantle, convection currents are responsible for the movement of tectonic plates and the formation of volcanic activity.
convection currents convection currents convection currents
convection currents convection currents convection currents
convection currents convection currents convection currents
Convection currents move in the Mantle.
convection currents discovery date
Convection currents move in upward direction
Which best explains the relationship between ocean currents and convection currents?(1 point) Responses Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Convection currents join with the Coriolis effect to create the winds that drive ocean currents. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents rely on warm convection currents to strength the Coriolis effect. Ocean currents create a Coriolis effect that increases convection currents. Ocean currents create a Coriolis effect that increases convection currents. Convection currents use the Coriolis effect to generate ocean currents.
No. Convection currents are the circular motion of earth's wind. If the earth did not rotate, convection currents would not be. Does that make sense?
what produces convection currents in earth's atmosphere
the convection currents will stop
Convection currents can vary in thickness, typically ranging from a few centimeters to kilometers depending on the scale of the system in which they occur. In the Earth's mantle, for example, convection currents can be tens to hundreds of kilometers thick.
They both are the same because they are currents that move like waves