answersLogoWhite

0

That's really too complicated for a short answer, of a few paragraphs, here. YouTube has some introductory videos about the topic, for example, from a "Dr PhysicsA"; a search on YouTube for "Dr Physics Schrödinger Wave Equation" will let you find them.

User Avatar

Wiki User

8y ago

What else can I help you with?

Continue Learning about Physics

How did heisenberg's principle influence schrodinger to develop his wave equation?

Heisenberg's uncertainty principle, which states the limitations in simultaneously measuring a particle's position and momentum accurately, inspired Schrodinger to find a description of particles in terms of waves. This led Schrodinger to develop his wave equation, which describes the behavior of quantum particles in terms of wave functions.


How Heisenberg's principle influenced Schrodinger to develop his wave equation?

Heisenberg's Uncertainty Principle introduced the concept of inherent uncertainty in measuring both the position and momentum of a particle simultaneously. This influenced Schrodinger to develop a wave equation that could describe the behavior of particles in terms of probability waves rather than definite trajectories, allowing for a more complete description of quantum systems. Schrodinger's wave equation provided a way to predict the behavior of quantum particles without violating the Uncertainty Principle.


What is the proof of the Schrdinger equation?

The proof of the Schrdinger equation involves using mathematical principles and techniques to derive the equation that describes the behavior of quantum systems. It is a fundamental equation in quantum mechanics that describes how the wave function of a system evolves over time. The proof typically involves applying the principles of quantum mechanics, such as the Hamiltonian operator and the wave function, to derive the time-dependent Schrdinger equation.


How can one derive the de Broglie equation from the principles of wave-particle duality?

To derive the de Broglie equation from the principles of wave-particle duality, one can consider that particles, like electrons, exhibit both wave-like and particle-like behavior. By applying the concept of wave-particle duality, one can relate the momentum of a particle to its wavelength, resulting in the de Broglie equation: h/p, where is the wavelength, h is Planck's constant, and p is the momentum of the particle.


What is more general between Schrodinger time independent or time dependent wave equation?

The time-independent Schrödinger equation is more general as it describes the stationary states of a quantum system, while the time-dependent Schrödinger equation describes the time evolution of the wave function. The time-independent equation can be derived from the time-dependent equation in specific situations.

Related Questions

When was the electron wave equation written?

This is the Schrodinger equation from 1925-1926.


Shapes of electron orbital are determined by what equations?

Schrodinger wave equation


How did heisenberg's principle influence schrodinger to develop his wave equation?

Heisenberg's uncertainty principle, which states the limitations in simultaneously measuring a particle's position and momentum accurately, inspired Schrodinger to find a description of particles in terms of waves. This led Schrodinger to develop his wave equation, which describes the behavior of quantum particles in terms of wave functions.


Why quantum mechanics is someone called wave mechanics?

It is also called wave mechanics because quantum mechanics governed by Schrodinger's wave equation in it's wave-formulation.


How Heisenberg's principle influenced Schrodinger to develop his wave equation?

Heisenberg's Uncertainty Principle introduced the concept of inherent uncertainty in measuring both the position and momentum of a particle simultaneously. This influenced Schrodinger to develop a wave equation that could describe the behavior of particles in terms of probability waves rather than definite trajectories, allowing for a more complete description of quantum systems. Schrodinger's wave equation provided a way to predict the behavior of quantum particles without violating the Uncertainty Principle.


Who created the wave?

Schrodinger


How did Erwin Schrodinger achieve quantum mechanics?

Erwin Schrodinger developed a wave equation, known as the Schrodinger equation, that describes how the quantum state of a physical system changes over time. This equation is a fundamental tool in quantum mechanics, providing a mathematical framework for predicting the behavior of particles at the quantum level. Schrodinger's work was crucial in the development of quantum mechanics as a coherent and successful theory.


The atom of Erwin Schrodinger and Louis de B oglie?

Erwin Schrodinger is known for his Schrodinger equation, which describes how the wave function of a physical system changes over time. Louis de Broglie proposed the concept of wave-particle duality, suggesting that particles like electrons can exhibit wave-like properties. Both of these contributions were instrumental in the development of quantum mechanics.


Can we apply schrodinger's wave equation to a particle having velocity comparable with the velocity of the light?

The equation, as originally written by Erwin Schrodinger, does not use relativity. More complicated versions of his original equation, which do incorporate relativity, have been developed.For more information, please see the related link below.


Which scientist was able to determine the electronic structure of the atom using an equation known as the quantum model that included the wave nature of the electron?

Erwin Schrodinger


What is the proof of the Schrdinger equation?

The proof of the Schrdinger equation involves using mathematical principles and techniques to derive the equation that describes the behavior of quantum systems. It is a fundamental equation in quantum mechanics that describes how the wave function of a system evolves over time. The proof typically involves applying the principles of quantum mechanics, such as the Hamiltonian operator and the wave function, to derive the time-dependent Schrdinger equation.


Who has the greatest contribution in quantum mechanics among Heisenberg and Dirac and Schrodinger?

Heisenberg, Dirac and Schrodinger all made large combinations. Schrodinger is famous for his wave mechanics, Heisenberg for his matrix notation. Dirac realised that the theories of Heisenberg and Schrodinger were essentially the same. He also created the Dirac equation, an important step in the creation of a relativistic version of Quantum Mechanics.