force output x distance = work output
~same for input
The input force is the force applied to a machine to make it work, while the output force is the force generated by the machine in response to the input force. The output force is what produces the desired work or movement from the machine based on the input force applied.
The input force is the force applied by the person using the hammer to pull the nail. The output force is the force exerted by the hammer on the nail to pull it out of the board. The output distance is the distance the nail moves as it is being pulled out of the board.
In a first-class lever, the fulcrum is located between the input force and the output force. In a second-class lever, the output force is located between the fulcrum and the input force. In a third-class lever, the input force is located between the fulcrum and the output force.
Levers are divided into three classes based on the relative positions of the input force, the fulcrum, and the output force. Class 1 levers have the fulcrum positioned between the input and output forces, class 2 levers have the output force between the input force and the fulcrum, and class 3 levers have the input force between the fulcrum and the output force.
In a class 3 lever, the direction of the input force is opposite to the direction of the output force. The fulcrum is located at one end, the input force is applied between the fulcrum and the output force, making the output force move in the opposite direction to the input force.
The difference between and input force and an output force is that an output force is force exerted by a machine, and an input force is force exerted on a machine.
The input force is the force applied to a machine to make it work, while the output force is the force generated by the machine in response to the input force. The output force is what produces the desired work or movement from the machine based on the input force applied.
The input force is the force applied by the person using the hammer to pull the nail. The output force is the force exerted by the hammer on the nail to pull it out of the board. The output distance is the distance the nail moves as it is being pulled out of the board.
In a first-class lever, the fulcrum is located between the input force and the output force. In a second-class lever, the output force is located between the fulcrum and the input force. In a third-class lever, the input force is located between the fulcrum and the output force.
The third class lever functions between the input force and the output force
Input force is the force applied to an object, while output force is the force exerted by the object in response. In a simple machine, the input force is the force applied to it, and the output force is the force produced by the machine to do work. The relationship between input and output forces determines the efficiency of a machine.
Levers are divided into three classes based on the relative positions of the input force, the fulcrum, and the output force. Class 1 levers have the fulcrum positioned between the input and output forces, class 2 levers have the output force between the input force and the fulcrum, and class 3 levers have the input force between the fulcrum and the output force.
Output distance is.
Answer: Output force is the force exerted on an object by a simple machine.
In a class 3 lever, the direction of the input force is opposite to the direction of the output force. The fulcrum is located at one end, the input force is applied between the fulcrum and the output force, making the output force move in the opposite direction to the input force.
The formula for work exerted by each simple machine is: Lever: Work = Input force × Input distance = Output force × Output distance Inclined plane: Work = Input force × Input distance = Output force × Output distance Pulley: Work = Input force × Input distance = Output force × Output distance Wheel and axle: Work = Input force × Input radius = Output force × Output radius Wedge: Work = Input force × Input distance = Output force × Output distance Screw: Work = Input force × Input distance = Output force × Output distance
The input arm is the distance between the input force and the fulcrum. The output arm is the distance between the output force and the fulcrum. The fulcrum is the fixed point around which the pulley rotates.