Yes, a pendulum can precess due to the interaction between its motion and external forces like friction or gravity. The precession causes the swing plane of the pendulum to rotate slowly over time.
The popular formula for the period of a pendulum works only for small angular displacements. In deriving it, you need to assume that theta, the angular displacement from the vertical, measured in radians, is equal to sin(theta). If not, you need to make much more complicated calculations. There are also other assumptions to simplify the formula - eg string is weightless. The swing of the pendulum will precess with the rotation of the earth. This may not work if the pendulum hits its stand! See Foucault's Pendulum (see link). The motion of the pendulum will die out as a result of air resistance. Thermal expansion can change the length of the pendulum and so its period.
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The weight on a pendulum is a 'mass' or a 'bob'.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.
The length of a pendulum can be found by measuring the distance from the point of suspension to the center of mass of the pendulum bob. This distance is known as the length of the pendulum.
The popular formula for the period of a pendulum works only for small angular displacements. In deriving it, you need to assume that theta, the angular displacement from the vertical, measured in radians, is equal to sin(theta). If not, you need to make much more complicated calculations. There are also other assumptions to simplify the formula - eg string is weightless. The swing of the pendulum will precess with the rotation of the earth. This may not work if the pendulum hits its stand! See Foucault's Pendulum (see link). The motion of the pendulum will die out as a result of air resistance. Thermal expansion can change the length of the pendulum and so its period.
At your mouth
precess
Identify and understand the problem
long, billions of years
Data collection?
Compound pendulum is a physical pendulum whereas a simple pendulum is ideal pendulum. The difference is that in simple pendulum centre of mass and centre of oscillation are at the same distance.
The longer the length of the pendulum, the longer the time taken for the pendulum to complete 1 oscillation.
The weight on a pendulum is a 'mass' or a 'bob'.
A longer pendulum will have a smaller frequency than a shorter pendulum.
Frictionlist pendulum is an example of the pendulum of a clock, a reversible process, free.
Doubling the mass of a pendulum will not affect the time period of its oscillation. The time period of a pendulum depends on the length of the pendulum and the acceleration due to gravity, but not on the mass of the pendulum bob.