answersLogoWhite

0

Air resistance does tend to slow things down, which may cause them to move more slowly. However, if you keep applying power - such as a jet engine - you can overcome the resistance and keep going.

User Avatar

Wiki User

9y ago

What else can I help you with?

Continue Learning about Physics

How can you prove air has resistance?

Air resistance can be proved by dropping objects of different masses and sizes from a height at the same time. Heavier objects fall faster due to gravity, but lighter objects experience more air resistance, causing them to fall slower. This difference in falling speed demonstrates that air exerts resistance on objects moving through it.


Do rough objects fall slower than smooth objects?

No, rough objects and smooth objects fall at the same rate in a vacuum due to gravity acting on them equally. In the presence of air resistance, rough objects may experience a slightly slower acceleration due to increased drag.


Do heavier objects fall faster or slower than light one?

Without air resistance, heavier and lighter object fall at the same speed. More precisely, they accelerate at the same speed - near Earth's surface that would be 9.8 meters/second2. If air resistance is significant, heavier objects tend to have less air resistance, compared to their weight, so they will usually fall faster.


Which body moves faster heavier or lighter?

In a vacuum, all objects fall at the same rate regardless of their weight due to gravity. However, in real-world conditions with air resistance, lighter objects tend to fall slower than heavier objects because air resistance affects lighter objects more.


In freefall heavier objects fall with a greater acceleration than lighter objects?

In a vacuum, all objects fall at the same rate regardless of mass due to gravity. This is known as the equivalence principle. However, in environments with air resistance, lighter objects may experience more air resistance and fall slower compared to heavier objects due to their surface area-to-mass ratio.

Related Questions

How can you prove air has resistance?

Air resistance can be proved by dropping objects of different masses and sizes from a height at the same time. Heavier objects fall faster due to gravity, but lighter objects experience more air resistance, causing them to fall slower. This difference in falling speed demonstrates that air exerts resistance on objects moving through it.


What force that makes a feather drop slower than a hammer on earth?

Air resistance.


Do rough objects fall slower than smooth objects?

No, rough objects and smooth objects fall at the same rate in a vacuum due to gravity acting on them equally. In the presence of air resistance, rough objects may experience a slightly slower acceleration due to increased drag.


Why do lighter objects fall slower than heavier objects?

In a vacuum. like in outer space, all substances fall at the same rate. Here on earth, the rate of falling is influenced by air resistance. A feather has 'way more air resistance than a ball of steel, for example, so falls slower.


Do heavier objects fall faster or slower than light one?

Without air resistance, heavier and lighter object fall at the same speed. More precisely, they accelerate at the same speed - near Earth's surface that would be 9.8 meters/second2. If air resistance is significant, heavier objects tend to have less air resistance, compared to their weight, so they will usually fall faster.


Which body moves faster heavier or lighter?

In a vacuum, all objects fall at the same rate regardless of their weight due to gravity. However, in real-world conditions with air resistance, lighter objects tend to fall slower than heavier objects because air resistance affects lighter objects more.


Is a ball with holes in it slower because of air resistance?

Yes, like flyswatters. they have holed to lower air resistance


In freefall heavier objects fall with a greater acceleration than lighter objects?

In a vacuum, all objects fall at the same rate regardless of mass due to gravity. This is known as the equivalence principle. However, in environments with air resistance, lighter objects may experience more air resistance and fall slower compared to heavier objects due to their surface area-to-mass ratio.


Why Parachutes fall slower if person or weight is heavier?

Heavier objects have greater gravitational force pulling them downward, which increases the air resistance force acting against the object, slowing down its fall. This results in a slower descent for heavier objects when a parachute is deployed.


What objects increase air resistance?

Objects that increase air resistance include large surface area objects (such as flags or parachutes), rough or uneven surfaces, and objects with irregular shapes (such as a car spoiler or a parachute harness). These objects create more friction with the air as they move, resulting in higher air resistance.


Does air resistance or air resistance have a greater impact on objects?

Air resistance has a greater impact on objects as it opposes the motion of the object through the air, slowing it down. This is especially evident at high speeds where air resistance becomes more significant. Friction tends to have a localized effect on objects in contact with surfaces.


How does acceleration due to gravity of the large ball compare to the smaller ball?

If you let two balls fall, initially the velocity will be the same. A small (and light) objects will eventually fall slower, because of increased air resistance. But if you can ignore air resistance - distances are short, or you do the experiment in a vacuum - acceleration will continue to be the same - on Earth, about 9.8 (meters per second) per second.If you let two balls fall, initially the velocity will be the same. A small (and light) objects will eventually fall slower, because of increased air resistance. But if you can ignore air resistance - distances are short, or you do the experiment in a vacuum - acceleration will continue to be the same - on Earth, about 9.8 (meters per second) per second.If you let two balls fall, initially the velocity will be the same. A small (and light) objects will eventually fall slower, because of increased air resistance. But if you can ignore air resistance - distances are short, or you do the experiment in a vacuum - acceleration will continue to be the same - on Earth, about 9.8 (meters per second) per second.If you let two balls fall, initially the velocity will be the same. A small (and light) objects will eventually fall slower, because of increased air resistance. But if you can ignore air resistance - distances are short, or you do the experiment in a vacuum - acceleration will continue to be the same - on Earth, about 9.8 (meters per second) per second.