Maybe. Maybe not. Suppose you start by telling us
what you mean by "the bounce of a ball".
On the third bounce, the ball will bounce to a height of 35% of the previous bounce height (35% of 35% of 125m). Therefore, the ball will bounce to a height of (35/100) x (35/100) x 125m = 15.63m on the third bounce.
Yes, the height of a ball's bounce is affected by the height from which it is dropped. The higher the drop height, the higher the bounce height due to the conservation of mechanical energy. When the ball is dropped from a greater height, it gains more potential energy, which is converted to kinetic energy during the bounce resulting in a higher bounce height.
Yes, the height of a bounce is affected by the height from which the ball is dropped. The higher the ball is dropped from, the higher it will bounce back due to the transfer of potential energy to kinetic energy during the bounce.
Yes, the initial height from which a ball is dropped can influence its bounce height. The higher the drop height, the higher the bounce height is likely to be, as potential energy is converted into kinetic energy during the bounce.
Yes, a ball's bounce is affected by the height from which it is dropped. The higher the drop height, the higher the ball will bounce due to the increase in potential energy transferred into kinetic energy during the bounce.
On the third bounce, the ball will bounce to a height of 35% of the previous bounce height (35% of 35% of 125m). Therefore, the ball will bounce to a height of (35/100) x (35/100) x 125m = 15.63m on the third bounce.
Yes, the height of a ball's bounce is affected by the height from which it is dropped. The higher the drop height, the higher the bounce height due to the conservation of mechanical energy. When the ball is dropped from a greater height, it gains more potential energy, which is converted to kinetic energy during the bounce resulting in a higher bounce height.
Yes, the height of a bounce is affected by the height from which the ball is dropped. The higher the ball is dropped from, the higher it will bounce back due to the transfer of potential energy to kinetic energy during the bounce.
Yes - the greater the height an item dropped the resulting bounce is higher
Yes - the greater the height an item dropped the resulting bounce is higher
Yes, the initial height from which a ball is dropped can influence its bounce height. The higher the drop height, the higher the bounce height is likely to be, as potential energy is converted into kinetic energy during the bounce.
It all depends on the height the ball has been dropped and the weight of the ball.
Yes.
Yes, a ball's bounce is affected by the height from which it is dropped. The higher the drop height, the higher the ball will bounce due to the increase in potential energy transferred into kinetic energy during the bounce.
The bounce height of a ball depends on factors like the material of the ball, the surface it bounces on, and the height from which it is dropped. In general, the bounce height is typically lower than the initial drop height due to energy losses during the bounce.
The height from which the ball is dropped is the independent variable, as it is what is being manipulated. The height of the ball's bounce is the dependent variable, as it is what is being measured and is affected by the height from which the ball is dropped.
The drop height of the ball directly affects the height of its bounce. A higher drop height results in a higher bounce, as the potential energy transferred to the ball upon impact is greater, causing it to rebound higher. Conversely, a lower drop height will result in a lower bounce.