answersLogoWhite

0

The buoyant force on any object in a fluid ... whether partially or fully submerged ... is

equal to the weight of the fluid displaced by the object. That's related to the object's

volume, and has nothing to do with its weight.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Physics

Does the buoyant force on a submerged object depend on the volume of the object ir the weight of the object?

The buoyant force on a submerged object depends on the volume of the object. It is equal to the weight of the fluid displaced by the object, which is determined by its volume. The weight of the object itself affects the net force experienced by the object when submerged.


How does the buoyant force on a fully submerged object compare with the water displaced?

The buoyant force on a fully submerged object is equal to the weight of the water displaced. In fact, that's also true of a floating object.


How does the buoyant force of a fully submerged object compare with the weight of the water displaced?

The buoyant force acting on a fully submerged object is equal in magnitude to the weight of the water displaced. This is known as Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the submerged object.


Does the buoyant force on a submerged object depend on the weight of the object itself or on the weight of the fluid displaced by the object?

The upward bouyant force depends only on the weight of the displaced fluid. The NET force (object's weight - bouyant force) depends on the object's weight and will determine how fast it sinks.


How does the buoyant force on a fully submerged object compare with the weight of the water displaced?

The buoyant force on any object in water is equal to the weight of the displaced water, regardless of how much of the object is submerged.

Related Questions

Does the buoyant force on a submerged object depend on the volume of the object ir the weight of the object?

The buoyant force on a submerged object depends on the volume of the object. It is equal to the weight of the fluid displaced by the object, which is determined by its volume. The weight of the object itself affects the net force experienced by the object when submerged.


How does the buoyant force on a fully submerged object compare with the water displaced?

The buoyant force on a fully submerged object is equal to the weight of the water displaced. In fact, that's also true of a floating object.


How does the buoyant force of a fully submerged object compare with the weight of the water displaced?

The buoyant force acting on a fully submerged object is equal in magnitude to the weight of the water displaced. This is known as Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the submerged object.


Does the buoyant force on a submerged object depend on the weight of the object itself or on the weight of the fluid displaced by the object?

The upward bouyant force depends only on the weight of the displaced fluid. The NET force (object's weight - bouyant force) depends on the object's weight and will determine how fast it sinks.


How does the buoyant force on a fully submerged object compare with the weight of the water displaced?

The buoyant force on any object in water is equal to the weight of the displaced water, regardless of how much of the object is submerged.


How do you calculate the buoyant force when given the air weight of an object's weight when submerged?

To calculate the buoyant force acting on an object submerged in water, you can use the formula: Buoyant force = Weight of the water displaced = Weight of the object in air - Weight of the object in water. This formula considers that the buoyant force is equal to the weight of the water displaced by the object.


What is the relationship between buoyant force and the volume of water displaced?

The buoyant force acting on an object submerged in water is equal to the weight of the water displaced by the object. The volume of water displaced is directly proportional to the buoyant force, meaning that the greater the volume of water displaced, the greater the buoyant force acting on the object.


How does the buoyant force on a submerged object compare with the weight of water displaced?

The buoyant force on a submerged object is equal in magnitude to the weight of the water displaced by the object. This principle is known as Archimedes' Principle. It explains why objects float or sink in fluids.


What is the upward force that acts on an object that is submerged in a fluid?

The upward force acting on an object submerged in a fluid is called buoyant force. It is equal to the weight of the fluid displaced by the object.


The amount of fluid displaced by a submerged object depends on what?

The amount of fluid displaced by a submerged object depends on the volume of the object itself. This is known as Archimedes' principle, which states that the buoyant force on an object is equal to the weight of the fluid displaced by the object.


The amount of fluid displaced by a submerged object depends on its?

The amount of fluid displaced by a submerged object depends on its volume. This is known as Archimedes’ principle, which states that the buoyant force acting on an object is equal to the weight of the fluid displaced by the object.


Is The buoyant force on an object depends on the volume of the object that is underwater?

Yes, the buoyant force on an object is equal to the weight of the fluid displaced by the object. This depends on the volume of the object that is submerged in the fluid, as it determines the amount of fluid displaced.