answersLogoWhite

0

No, it does not. The earth's acceleration is relatively constant at or near the surface; about 9.8 meters per second squared. In short, just because the mass of an object is more or less does not mean it can affect the gravitational force of the earth.

=================================

I think you may be asking whether the mass of the pendulum bob affects the result of the MEASUREMENT when we use that pendulum to measure the local acceleration of gravity. There again, the answer is No ... When you look at the formula that relates the period of the pendulum, its length, and the local gravity, the mass of the pendulum doesn't appear in the formula, and the result of the calculation is the same no matter how heavy your bob is.

Now, if you want to get technical about it, the 'length' of the pendulum is the distance from the pivot to the center of mass. So, if the string or other means of suspension from which the bob hangs is NOT massless, then the mass of the bob does affect the position of the center of mass, and therefore the period of the pendulum. So for accurate measurement, it's always best to use the lightest possible string, and the most massive possible bob, in order to have the center of mass actually located as close as possible to where you THINK it is.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the value of pi squared and the acceleration due to gravity?

The relationship between the value of pi squared () and the acceleration due to gravity is that the square of pi () is approximately equal to the acceleration due to gravity (g) divided by the height of a pendulum. This relationship is derived from the formula for the period of a pendulum, which involves both pi squared and the acceleration due to gravity.


Does the mass of the pendulum bob affect the value of g why?

The value of gravitational acceleration 'g' is totally unaffected by changing mass of the body. We are not talking about weight of the pendulum. It is the value 'g' we are talking about, which remains unaffected by changing mass as: g= ((2xpie)2)xL)/T2 where, g= gravitational acceleration L= length of simple pendulum T= time period in which the pendulum completes its single vibration or oscillation


What is the effect of changing length or mass of the pendulum on the value of g?

Changing the length or mass of a pendulum does not affect the value of acceleration due to gravity (g). The period of a pendulum depends on the length of the pendulum and not on its mass. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Does changing the mass of the pendulum affect the number of swings?

The mass of the pendulum does not significantly affect the number of swings. The period (time taken for one complete swing) of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The mass only influences the amplitude of the swing.


What will happen to value of g if compound pendulum is taken nearer to the centre of the earth?

The acceleration of gravity decreases as the observation point is taken deeper beneath the surface of the Earth, but it's not the location of the compound pendulum that's responsible for the decrease.

Related Questions

What is the relationship between the value of pi squared and the acceleration due to gravity?

The relationship between the value of pi squared () and the acceleration due to gravity is that the square of pi () is approximately equal to the acceleration due to gravity (g) divided by the height of a pendulum. This relationship is derived from the formula for the period of a pendulum, which involves both pi squared and the acceleration due to gravity.


Does the mass of the pendulum bob affect the value of g why?

The value of gravitational acceleration 'g' is totally unaffected by changing mass of the body. We are not talking about weight of the pendulum. It is the value 'g' we are talking about, which remains unaffected by changing mass as: g= ((2xpie)2)xL)/T2 where, g= gravitational acceleration L= length of simple pendulum T= time period in which the pendulum completes its single vibration or oscillation


What is the effect of changing length or mass of the pendulum on the value of g?

Changing the length or mass of a pendulum does not affect the value of acceleration due to gravity (g). The period of a pendulum depends on the length of the pendulum and not on its mass. The formula for the period of a pendulum is T = 2π√(L/g), where T is the period, L is the length of the pendulum, and g is the acceleration due to gravity.


Does changing the mass of the pendulum affect the number of swings?

The mass of the pendulum does not significantly affect the number of swings. The period (time taken for one complete swing) of a pendulum depends on the length of the pendulum and the acceleration due to gravity. The mass only influences the amplitude of the swing.


What will happen to value of g if compound pendulum is taken nearer to the centre of the earth?

The acceleration of gravity decreases as the observation point is taken deeper beneath the surface of the Earth, but it's not the location of the compound pendulum that's responsible for the decrease.


Discussion of the measurement of gravity by a bar pendulum?

A bar pendulum is a simple pendulum with a rigid bar instead of a flexible string. Gravity can be measured using a bar pendulum by observing the period of oscillation, which relates to the acceleration due to gravity. By timing the pendulum's swing and applying the appropriate formulae, the value of gravity can be calculated. This method provides a simple and effective way to measure gravity in a laboratory setting.


Would be value of g be affected if the size of the Bob is varied in simple pendulum experiment?

No, the value of acceleration due to gravity (g) would not be affected by changing the size of the bob in a simple pendulum experiment. The period of a simple pendulum is determined by the length of the pendulum and the gravitational acceleration at that location, not the size of the bob.


Does changing the mass of a free falling body affect the value of the acceleration of gravity?

No, changing the mass of a free-falling body does not affect the value of the acceleration due to gravity. The acceleration due to gravity is a constant value that is independent of the mass of the object. All objects fall at the same rate in a vacuum due to gravity.


To determine the value of g acceleration due to gravity by means of an angular pendulum?

The period (time) of one swing of a pendulum is(2 pi) times the square root of (pendulum length / acceleration of gravity). There are three variables in this formula ... the length of the pendulum, the period of itsswing, and the acceleration of gravity. If you know any two of them, you can calculate thethird one. You want to use this method to measure gravity ? Fine ! Massage the formulaaround to this form Acceleration of gravity = (length of the pendulum) times (2 pi/period)2 then start measuring and swinging.The more accurately you can measure the length of your pendulum, from the pivotto the center of mass of everything that swings, and the period of its swing, and themore completely you can isolate everything from outside influences, like air currents,the more accurately you can calculate the acceleration of gravity, in the exact place whereyou run the experiment.


How would you determine the value of gravity using a pendulum?

Set the pendulum swinging, with only a very small initial angular displacement. Measure the time taken to complete a certain number of oscillations, and then establish the average duration T of an oscillation. If the length of the pendulum is L, then gravitational field strength g is approximated by g = ~4pi2L/T2 This result derives from the modelling of the pendulum as a simple harmonic oscillator; for this to be a realistic model, the amplitude of oscillations must be small.


What is the relationship between the potential energy on a pendulum and the value of mass height and gravity acceleration?

The potential energy of a pendulum is directly related to the mass of the object, the height at which the object is lifted, and the acceleration due to gravity. The potential energy increases with the mass of the object, the height to which it is lifted, and the strength of the gravitational field. This relationship is described by the equation for gravitational potential energy: PE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height.


What will happen to the value of g if the compound pendulum is taken nearer to the centre of earth?

The value of g would increase if the compound pendulum is taken nearer to the center of the Earth. This is because gravity is stronger closer to the Earth's surface. Conversely, if the compound pendulum is moved further away from the center of the Earth, the value of g would decrease.