Yes, the photoelectric effect occurs when light shines on metal. This phenomenon involves the emission of electrons from a material when it is exposed to light. The energy of the photons in the incident light must be sufficient to overcome the work function of the metal in order for electrons to be ejected.
The device you are referring to is a photoelectric cell or a photodiode. When light shines on the metal surface of these devices, electrons are emitted in a process called the photoelectric effect, which generates an electric current.
Light produces electrons in the photoelectric effect. When light of sufficient energy (photon energy) shines on a metal surface, it can eject electrons from the surface, creating a flow of current.
When light hits a metal in the photoelectric effect, it can transfer its energy to the electrons in the metal. If the energy of the light is high enough, it can cause the electrons to be ejected from the metal, creating a flow of electrical current.
no , it cannot be observed in same conditions of incident light because, the threshold energy will be different for different metals.so in that particular threshold energy only the photoelectric effect for that metal can be observed.....
Apex Light is made of photons.
The device you are referring to is a photoelectric cell or a photodiode. When light shines on the metal surface of these devices, electrons are emitted in a process called the photoelectric effect, which generates an electric current.
Light produces electrons in the photoelectric effect. When light of sufficient energy (photon energy) shines on a metal surface, it can eject electrons from the surface, creating a flow of current.
Yes, indium can display the photoelectric effect when exposed to UV light. When UV light shines on a metal surface like indium, electrons are ejected from the surface due to the photon energy exceeding the work function of the metal. This phenomenon is known as the photoelectric effect.
There is the photoelectric effect, which is the process that emitts electrons from a metals surface when light of a certain frequency shines on the surface. In the metal, the nuclei are surrounded by electrons, so when the incoming electrons strike the surface, they pull apart from the electrons of the metal because of how like charges detract from each other.
When light hits a metal in the photoelectric effect, it can transfer its energy to the electrons in the metal. If the energy of the light is high enough, it can cause the electrons to be ejected from the metal, creating a flow of electrical current.
no , it cannot be observed in same conditions of incident light because, the threshold energy will be different for different metals.so in that particular threshold energy only the photoelectric effect for that metal can be observed.....
Apex Light is made of photons.
Increasing the intensity of light in the photoelectric effect results in an increase in the number of photons, which can lead to a higher number of photoelectrons being ejected from the metal surface. This results in an increase in the photoelectric current.
When light hits a metal surface in the photoelectric effect, electrons are ejected from the metal if the light has sufficient energy (above the threshold frequency). This process demonstrates that light behaves as a particle (photons) with discrete energy levels when interacting with matter.
B: When you shine a particular color of light on it.
When visible light is absorbed by a metal, it can cause the metal to heat up or emit electrons in a process called the photoelectric effect.
Photoelectric effect.===================================== This phenomenon was discovered by Albert Einstein, for which he received the Nobel Prize for Physics. The solar cells that we use today is a direct application of the photoelectric effect, as the special metal absorbs Sun's photons and gives off electron (and the flow of electrons generates an electric current).