Yes. However the volume of a gas must be constant or decreasing. If the volume is increasing then the pressure may not be increasing.
For apex the answer if False.
Not necessarily. The volume of a gas is directly proportional to temperature and inversely proportional to pressure, according to the ideal gas law. If the temperature increases and pressure decreases proportionately, the volume would remain constant.
At hIgher temperatures, the volume will be greater. This is caused by thermal expansion. As you add heat to the gas, it expands usually at a costant rate. There fore, it's volume Increases. However, it's mass will always remain constant.
As indicated by the Ideal Gas Laws, increasing temperature will tend to increase both volume and pressure. Of course, volume can't always increase, that depends upon the flexibility or inflexibility of the container that the gas is in, and if the volume does increase that will counteract the increase in pressure that would otherwise have happened. Temperature, pressure, and volume are all interconnected in a gas.
Your age, as it increases each year but decreases with each passing day.
Pressure and Volume are indirectly propotional to each others. if you increase the Area the pressure will be decresed, and if you decrease the area of the applied pressure, the pressure will be automatically increased, Hence. Pressure if Indirectly propotional to Area.
True.The Ideal Gas Law is PV = nRT, where P is pressure, V is volume, n is the amount of gas, R is the gas constant, and T is temperature. You can see clearly that, all other things being equal, pressure is directly proportional to temperature.
Not necessarily. The volume of a gas is directly proportional to temperature and inversely proportional to pressure, according to the ideal gas law. If the temperature increases and pressure decreases proportionately, the volume would remain constant.
At hIgher temperatures, the volume will be greater. This is caused by thermal expansion. As you add heat to the gas, it expands usually at a costant rate. There fore, it's volume Increases. However, it's mass will always remain constant.
When pressure decreases, entropy increases. Increases in entropy correspond to pressure decreases and other irreversible changes in a system. Entropy determines that thermal energy always flows spontaneously from regions of higher temperature to regions of lower temperature, in the form of heat.
Pressure always decreases with height. This is because atmospheric pressure is just a measure of how much air is weighing down. So the higher you go in the atmosphere, the less air is above you (more of it is below you) and the lower the pressure will be.
As indicated by the Ideal Gas Laws, increasing temperature will tend to increase both volume and pressure. Of course, volume can't always increase, that depends upon the flexibility or inflexibility of the container that the gas is in, and if the volume does increase that will counteract the increase in pressure that would otherwise have happened. Temperature, pressure, and volume are all interconnected in a gas.
In general, but not always, increasing the temperature will increase the rate of the forward reaction. This is because an increase in temperature increases the speed at which the molecules move, increasing the kinetic energy, and thus making it easier to reach the activation energy. Of course, this is true only for endothermic reactions. If the reaction is exothermic, then increasing the temperature will slow down the forward reaction.
It usually decreases.
The Ideal Gas Law states that PV=nRT, where P=pressure, V=volume, n=number of moles of gas, R=the relativity constant, and T=temp in Kelvin. According to this law, volume (V) varies as V=(nRT)/P. Using this, we can determine that the volume would normally increase with an increase in the number of moles and/or an increase in the temperature and/or a decrease in pressure. Therefore, we can logically determine that the volume of a gas would decrease in the instance of increasing temperature if either the number of moles of gas was decreased or the pressure was increased (to an extent where the level of volume increase by temperature change has been overcome.)
The air pressure has no effect. The static air pressure p_ and the density ρ of air (air density) are proportional at the same temperature. The ratio p_ / ρ is always constant, on a high mountain or even on sea level altitude. That means, the ratio p_ / ρ is always constant on a high mountain, and even at "sea level". The static atmospheric pressure p_ and the density of air ρ go always together. The ratio stays constant. When calculating the speed of sound, forget the atmospheric pressure, but look accurately at the very important temperature. The speed of sound varies with altitude (height) only because of the changing temperature there.
The temperature
Your age, as it increases each year but decreases with each passing day.