It is not the weight of the immersed object but the volume of the object would affect the buoyant force on the immersed object because the buoyant force is nothing but the weight of the displaced liquid whose volume is equal to that of the immersed object.
The density of the liquid affects the buoyant force acting on the object immersed in it. If the object is less dense than the liquid, it will float. If the object is denser, it will sink. The denser the liquid, the greater the buoyant force acting on the object.
No, the weight of an object immersed in a liquid does not affect the buoyant force on the object. The buoyant force is solely determined by the volume of the displaced liquid. The weight of the object affects the net force experienced by the object in the liquid.
The weight loss of an object when immersed in a liquid is due to the buoyant force acting on the object. This force is equal to the weight of the liquid displaced by the object. As a result, the apparent weight of the object is reduced when immersed in a liquid.
The buoyant force exerted on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. The buoyant force is directly proportional to the density of the liquid. Therefore, the denser the liquid, the greater the buoyant force it exerts on the object.
No, the object will experience different buoyant forces in each liquid depending on the density of the liquid. The buoyant force is equal to the weight of the liquid displaced by the object, so if the densities of the liquids are different, the buoyant forces will be different.
The density of the liquid affects the buoyant force acting on the object immersed in it. If the object is less dense than the liquid, it will float. If the object is denser, it will sink. The denser the liquid, the greater the buoyant force acting on the object.
Not at all. (The buoyancy force equals the weight if the displaced water,)
No, the weight of an object immersed in a liquid does not affect the buoyant force on the object. The buoyant force is solely determined by the volume of the displaced liquid. The weight of the object affects the net force experienced by the object in the liquid.
-- volume of the object immersed in fluid -- density of the fluid in which the object is immersed
The weight loss of an object when immersed in a liquid is due to the buoyant force acting on the object. This force is equal to the weight of the liquid displaced by the object. As a result, the apparent weight of the object is reduced when immersed in a liquid.
The buoyant force exerted on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. The buoyant force is directly proportional to the density of the liquid. Therefore, the denser the liquid, the greater the buoyant force it exerts on the object.
No, the object will experience different buoyant forces in each liquid depending on the density of the liquid. The buoyant force is equal to the weight of the liquid displaced by the object, so if the densities of the liquids are different, the buoyant forces will be different.
The magnitude of the buoyant force acting on an object immersed in a liquid is equal to the weight of the liquid displaced by the object. It can be calculated using the formula: Buoyant force = Volume of the object (V) * Density of the liquid (P) * Acceleration due to gravity (g).
"What is the force exerted by a still liquid on an immersed non-moving object called? -- PressureOtherwise, if the object is moving, one could also have "shear forces".
When an object is immersed in liquid then an equal volume of liquid would be displaced to the upper surface. The weight of this expelled liquid would be used as a force to push up the immersed object. Hence it is named as upthrust or buoyant force
When an object is immersed in a liquid, the liquid exerts a buoyant force on the object which is equal to the weight of the liquid displaced by the object. This statement is known as Archimedes' Principle. When a solid body is immersed wholly or partially in a liquid, then there is same apparent loss in its weight. This loss in weight is equal to the weight of the liquid displaced by the body. the bouyant force of an object equal to the weight of the fluid that the object displaced .
Buoyant force is defined as the upward force exerted by a liquid, gas or other fluid, that opposes the weight of an immersed object. According to Archimedes' principle, the buoyant force is equal to the weight of the fluid displaced by the objects. Because all of the objects displace the fluid, buoyant force acts on all of them.