WEll, mass is how much you take up. If you were to go to the moon, you weight would change but your mass would not. Answer your question?
My version:Weight is a subjective measurement based on gravityMass is a measurement that precludes the effects of gravity and will be how the gravitational pull is measured
Mass is a measure of how much matter is in an object, while weight is the force of gravity acting on that object. Gravity is the force of attraction between objects with mass, so mass and gravity are related in that gravity acts on objects with mass to create weight.
If the force of gravity increases, weight will increase because weight is the measure of the force of gravity on an object. However, mass remains constant as it is a measure of the amount of matter in an object and does not change with gravity.
Gravity affects mass by influencing the weight of an object. The mass of an object remains constant regardless of the gravitational force acting upon it, but its weight can change depending on the strength of gravity. As gravity increases, the weight of an object will also increase, but its mass will remain the same.
Gravity affects an object's weight, which is the force of gravity acting on its mass. The mass of an object remains the same regardless of its location, but its weight can change depending on the strength of gravity. In areas with stronger gravity, objects will weigh more compared to areas with weaker gravitational pull.
Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.
No, it gives you weight. Mass does not change in the presence of gravity.
Mass is a measure of how much matter is in an object, while weight is the force of gravity acting on that object. Gravity is the force of attraction between objects with mass, so mass and gravity are related in that gravity acts on objects with mass to create weight.
If the force of gravity increases, weight will increase because weight is the measure of the force of gravity on an object. However, mass remains constant as it is a measure of the amount of matter in an object and does not change with gravity.
* Mass doesn't change because of conservation of mass. * Weight changes because it is the product of mass x gravity - and gravity on the Moon is less.
There is really only 1 way you can change the weight of an object without changing the mass. You must change gravity.
No. The mass of an object doesn't change (Law of Conservation of Mass), therefore its weight won't change either (weight = mass x gravity).
the weight reduces due to change in gravity but mass remains constant
The formula that relates them is: weight = mass x gravity If gravity doesn't change - which is the usual case close to Earth's gravity - you can say that weight is proportional to mass. That means that twice the mass results in twice the weight.
No. Except for insignificant effects related to Special Relativity, the mass remains constant. The weight, on the other hand, changes. Weight is calcualted as: weight = mass x gravity Where "gravity" is the acceleration due to gravity.
Gravity affects mass by influencing the weight of an object. The mass of an object remains constant regardless of the gravitational force acting upon it, but its weight can change depending on the strength of gravity. As gravity increases, the weight of an object will also increase, but its mass will remain the same.
Gravity affects an object's weight, which is the force of gravity acting on its mass. The mass of an object remains the same regardless of its location, but its weight can change depending on the strength of gravity. In areas with stronger gravity, objects will weigh more compared to areas with weaker gravitational pull.
Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.Mass does not depend on gravity. At zero gravity the object will have the same mass as at a higher gravity. What changes is the object's weight. The fact that the object still has mass can be ascertained from its inertia - it will take a force to make it move, or to stop it.