answersLogoWhite

0

Test charge, I think is the answer you are looking for.

User Avatar

Wiki User

9y ago

What else can I help you with?

Related Questions

A what will move in the direction of the arrows on the electric field lines?

A positive charge will move in the direction of the arrows on the electric field lines. Electric field lines show the direction a positive test charge would move if placed in the field.


Why are electric field drawn with arrows?

Electric field lines are drawn with arrows to show the direction of the force that a positive test charge would experience if placed in the field. The direction of the electric field at any point is the direction that a positive test charge would move when placed in the field at that point.


What is the behavior of the electric field outside a capacitor?

The behavior of the electric field outside a capacitor is that it is weak and tends to spread out in all directions.


Do electric field lines cross?

No, electric field lines do not cross each other. If they did, it would imply that there are multiple directions for the electric field at the same point, which is not possible. The electric field lines always repel or attract each other, but they never cross.


Why is electric field intensity zero at the centre of an electric dipole?

At the center of an electric dipole, the electric field vectors from the positive and negative charges cancel each other out due to their opposite directions. This results in a net electric field intensity of zero at the center of the dipole.


Is it possible for electric flux to have a negative value?

Yes, electric flux can have a negative value if the electric field and the area vector have opposite directions.


Is it possible for electric field lines to cross each other?

No, electric field lines cannot cross each other because they represent the direction of the electric field at any given point, and if they were to cross, it would imply that the electric field has multiple directions at that point, which is not physically possible.


Can two electric field lines be drawn at a point?

No, two electric field lines cannot originate from the same point because the electric field direction at that point would be ambiguous. Electric field lines always point in the direction of the electric field at a given point and represent the direction a positive test charge would move in that field.


What is the distribution of the electric field inside an insulating cylinder?

The electric field inside an insulating cylinder is uniform and radial, meaning it points outward from the center of the cylinder in all directions.


How do you determine work done by electric field?

The work done by an electric field on a charged particle can be calculated using the formula: Work = charge of the particle x electric field strength x distance moved. The work is positive if the electric field and the displacement are in the same direction, and negative if they are in opposite directions.


What is meant by electric field intencity?

An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength. An electric field can be represented diagrammatically as a set of lines with arrows on, called electric field-lines, which fill space. Electric field-lines are drawn according to the following rules: The direction of the electric field is everywhere tangent to the field-lines, in the sense of the arrows on the lines. The magnitude of the field is proportional to the number of field-lines per unit area passing through a small surface normal to the lines. Thus, field-lines determine the magnitude, as well as the direction, of the electric field. In particular, the field is strong at points where the field-lines are closely spaced, and weak at points where they are far apart. Electric Field intensity It was stated that the electric field concept arose in an effort to explain action-at-a-distance forces. All charged objects create an electric field which extends outward into the space which surrounds it. The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object. In this section of Lesson 4, we will investigate electric field from a numerical viewpoint - the electric field strength.


Why is the electric field of an infinite charged sheet not infinite?

This is a matter of limits. If you are measuring the electric field at a point that is a distance off of an infinite sheet of charge the direction of the electric field will be perpendicular to the sheet due to the symmetry of the situation. We can think of the radius as the distance between a point on the sheet and the normal line to the sheet that passes through the point where the electric field is being considered. If we look at the addition to the electric field from the charge on the sheet as this radius approaches infinity the component of the electric field in the direction of the net electric field will approach 0.P.S. Drawing a diagram of the situation with arrows denoting the directions of force from different parts of the sheet can be very helpful in understanding.