It's weight and the reaction force from it's weight.
Hope that helps!
There are forces acting on the car. They are just equal to the force of the car acting on the force. In example, gravity is acting on the car, but the car is pushing back equally. Therefore, the car doesn't move.
There are several forces acting on a still car: gravity pulling it downward, normal force pushing it upward, and frictional forces opposing motion on the ground.
Yes, even when a car is at rest, there are still forces acting on it. The two main forces are the force of gravity, pulling the car downward towards the ground, and the normal force exerted by the ground on the car to keep it stationary.
The main forces acting on a car moving at a constant speed on a level highway in still air are the driving force from the engine propelling the car forward and the opposing forces such as friction between the tires and the road and air resistance. When these forces are balanced, the car will continue to move at a constant speed.
When a car is not moving, the main forces acting on it are gravity pulling it downward and the normal force from the ground pushing upward to support the car's weight. There may also be frictional forces between the tires and the road, as well as air resistance acting on the car.
There are forces acting on the car. They are just equal to the force of the car acting on the force. In example, gravity is acting on the car, but the car is pushing back equally. Therefore, the car doesn't move.
There are several forces acting on a still car: gravity pulling it downward, normal force pushing it upward, and frictional forces opposing motion on the ground.
Yes, even when a car is at rest, there are still forces acting on it. The two main forces are the force of gravity, pulling the car downward towards the ground, and the normal force exerted by the ground on the car to keep it stationary.
The main forces acting on a car moving at a constant speed on a level highway in still air are the driving force from the engine propelling the car forward and the opposing forces such as friction between the tires and the road and air resistance. When these forces are balanced, the car will continue to move at a constant speed.
on a still car the weight force is down, and is balanced with the reaction force (working upwards). friction of forward and balanced with drag - backwards. ;)
what about it?lolololololol
When a car is not moving, the main forces acting on it are gravity pulling it downward and the normal force from the ground pushing upward to support the car's weight. There may also be frictional forces between the tires and the road, as well as air resistance acting on the car.
Yes, it is possible for an object to not be in motion and still have forces acting on it. This situation could occur if the forces acting on the object are balanced, resulting in a state of equilibrium where there is no net force causing motion.
When a car is accelerating, the main forces acting on it are the driving force from the engine that propels the car forward, and the opposing forces such as friction between the tires and the road surface, air resistance, and the car's inertia that resists the change in motion.
If the sum of all the forces acting on a car is zero, it means that the car is in a state of equilibrium. In this case, the car will either be at rest or moving at a constant speed. If the car is already moving at a certain speed, it will continue to move at that speed due to the balance of forces acting on it.
A free body diagram can help analyze the forces acting on a roller coaster car by showing all the forces acting on the car, such as gravity, normal force, and tension. By analyzing these forces, we can determine if the car will have enough speed to make it through the loop safely.
The forces acting on a stationary boat in still water are gravity acting downwards, buoyancy acting upwards, and drag acting to oppose any external forces like wind or current. These forces are balanced when the boat is stationary.