answersLogoWhite

0

Extension has something to doing with multiplication.

What else can I help you with?

Continue Learning about Physics

How do you calculate extension of a spring with mass attached to it?

To calculate the extension of a spring with mass attached to it, you can use Hooke's Law, which states that the force exerted by the spring is directly proportional to the extension of the spring. The formula is F = kx, where F is the force applied, k is the spring constant, and x is the extension of the spring. By rearranging the formula, you can calculate the extension x = F / k.


How can one determine the spring potential energy in a system?

To determine the spring potential energy in a system, you can use the formula: Potential Energy 0.5 k x2, where k is the spring constant and x is the displacement of the spring from its equilibrium position. This formula calculates the energy stored in the spring due to its compression or extension.


How are force and extension related?

Force and extension are related through Hooke's Law, which states that the force needed to stretch or compress a spring is directly proportional to the extension or compression of the spring. This means that the more force applied, the greater the extension (or compression) of the spring, and vice versa. Mathematically, this relationship can be expressed as F = kx, where F is the force, k is the spring constant, and x is the extension (or compression) of the spring.


What is the relation between force and extension?

The relation between force and extension is described by Hooke's Law, which states that the force applied on an elastic material is directly proportional to the extension or compression produced in the material. Mathematically, this can be expressed as F = kx, where F is the force applied, k is the spring constant, and x is the extension or compression.


Why do the load extension graph passes through the origin?

The load extension graph passes through the origin because at the beginning of the test, there is no load applied, so the extension is zero. This is the starting point on the graph where load and extension are proportional to each other before any deformation occurs.