Yes it does. That's correct.
By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.
Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.
The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).
Weight is inversely proportional to the square of the distance between two objects. This means that as the distance increases, the gravitational force between the objects decreases.
Distance between two objects affects the gravitational force acting between them. As distance increases, the gravitational force decreases. This relationship is described by the inverse square law, which states that the force is inversely proportional to the square of the distance between the objects.
By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.By a factor of 9. Gravitational force is inversely proportional to the square of the distance.
Gravitational force is inversely proportional to the square of the distance. Therefore, double the distance = 1/22 = 1/4 the force.
Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.Yes. The gravitational force is inversely proportional to the square of the distance; meaning, for example, that if you increase the distance by a factor of 10, the force will be reduced by a factor 100.
its inversely proportional to the square of the distance between objects.
The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).The gravitational force is inversely proportional to the square of the distance. For example, if you increase the distance by a factor of 10, the force will decrease by a factor of 100 (10 squared).
Its proportional to the product of their masses, and inversely proportional to the square of their distance apart.
Weight is inversely proportional to the square of the distance between two objects. This means that as the distance increases, the gravitational force between the objects decreases.
Distance between two objects affects the gravitational force acting between them. As distance increases, the gravitational force decreases. This relationship is described by the inverse square law, which states that the force is inversely proportional to the square of the distance between the objects.
Gravitational force decreases as distance between two objects increases. This decrease is described by the inverse square law, which states that the force is inversely proportional to the square of the distance between the objects.
As Isaac Newton explained some centuries ago, gravitational force is directly proportional to the product of the masses involved, and is inversely proportional to the square of the distance between the centers of the masses.
Decrease. Gravitational force is inversely proportional to the square of the distance between two objects, so as the distance between them increases, the gravitational force between them decreases.
I assume you mean, of the gravitational field? The gravitational field is inversely proportional to the square of the distance. At a distance of 1 Earth radius, the distance from the center of the Earth is twice the distance at the Earth's surface; thus, the field strength is 1/4 what it is on the surface. If at the surface the field strength is about 9.8 meters per second square, divide that by 4 to get the field strength at a distance of one Earth radius from the surface.I assume you mean, of the gravitational field? The gravitational field is inversely proportional to the square of the distance. At a distance of 1 Earth radius, the distance from the center of the Earth is twice the distance at the Earth's surface; thus, the field strength is 1/4 what it is on the surface. If at the surface the field strength is about 9.8 meters per second square, divide that by 4 to get the field strength at a distance of one Earth radius from the surface.I assume you mean, of the gravitational field? The gravitational field is inversely proportional to the square of the distance. At a distance of 1 Earth radius, the distance from the center of the Earth is twice the distance at the Earth's surface; thus, the field strength is 1/4 what it is on the surface. If at the surface the field strength is about 9.8 meters per second square, divide that by 4 to get the field strength at a distance of one Earth radius from the surface.I assume you mean, of the gravitational field? The gravitational field is inversely proportional to the square of the distance. At a distance of 1 Earth radius, the distance from the center of the Earth is twice the distance at the Earth's surface; thus, the field strength is 1/4 what it is on the surface. If at the surface the field strength is about 9.8 meters per second square, divide that by 4 to get the field strength at a distance of one Earth radius from the surface.