To determine the direction of the magnetic force, you can use the right-hand rule. Point your thumb in the direction of the current, and curl your fingers in the direction of the magnetic field. The direction your fingers point is the direction of the magnetic force.
To determine the direction of force in a magnetic field, use the right-hand rule. Point your thumb in the direction of the current, and your fingers will curl in the direction of the magnetic field. The force will act perpendicular to both the current and the magnetic field.
The direction of magnetic force can be determined using the right-hand rule. Point your right thumb in the direction of the current or movement of the charged particle, then curl your fingers. The direction your fingers point represents the direction of the magnetic force.
To determine the direction of current in a magnetic field, you can use the right-hand rule. Point your right thumb in the direction of the current and curl your fingers in the direction of the magnetic field. Your fingers will then point in the direction of the force acting on the current.
Current carrying conductor will have magnetic lines around it. So when it is kept perpendicular to the magnetic field then the force would be maximum. The force depends on 1. magnitude of current 2. Magnetic field induction 3. Angle between the direction of current and magnetic field. Fleming's Left hand rule is used to find the direction of force acting on the rod
The direction of the magnetic force on the current in (a) is perpendicular to both the direction of the current and the direction of the magnetic field.
To determine the direction of force in a magnetic field, use the right-hand rule. Point your thumb in the direction of the current, and your fingers will curl in the direction of the magnetic field. The force will act perpendicular to both the current and the magnetic field.
The direction of magnetic force can be determined using the right-hand rule. Point your right thumb in the direction of the current or movement of the charged particle, then curl your fingers. The direction your fingers point represents the direction of the magnetic force.
To determine the direction of current in a magnetic field, you can use the right-hand rule. Point your right thumb in the direction of the current and curl your fingers in the direction of the magnetic field. Your fingers will then point in the direction of the force acting on the current.
Current carrying conductor will have magnetic lines around it. So when it is kept perpendicular to the magnetic field then the force would be maximum. The force depends on 1. magnitude of current 2. Magnetic field induction 3. Angle between the direction of current and magnetic field. Fleming's Left hand rule is used to find the direction of force acting on the rod
The direction of the magnetic force on the current in (a) is perpendicular to both the direction of the current and the direction of the magnetic field.
Fleming's right hand rule is used to determine the direction of the magnetic force on a current-carrying conductor in a magnetic field. By aligning the thumb with the direction of current flow, the forefinger with the direction of the magnetic field, the middle finger points in the direction of the magnetic force acting on the conductor.
The direction of the magnetic force on an electron is perpendicular to both the electron's velocity and the magnetic field it is in.
Fleming's right-hand rule is a way to determine the direction of the force experienced by a current-carrying conductor in a magnetic field. Point your right thumb in the direction of the current, and your fingers will curve in the direction of the magnetic field, giving the direction of the force.
To find the direction of magnetic force in a given scenario, use the right-hand rule. Point your right thumb in the direction of the current, and curl your fingers in the direction of the magnetic field. The direction your fingers point is the direction of the magnetic force.
The right-hand rule for electrons states that if you point your thumb in the direction of the electron's motion, and curl your fingers in the direction of the magnetic field, then your palm will point in the direction of the force acting on the electron. This rule is used to determine the direction of the magnetic field created by the motion of electrons.
The force acting on a charge moving in the direction of a magnetic field is perpendicular to both the direction of the charge's movement and the magnetic field. This force is known as the magnetic Lorentz force and will cause the charge to move in a circular path.
forefinger in the direction of the lines of force