To determine the natural frequency from a graph, identify the peak point on the graph which represents the highest amplitude or resonance. The frequency corresponding to this peak point is the natural frequency of the system.
To determine the damped natural frequency from a graph, one can identify the peak of the response curve and measure the time it takes for the amplitude to decrease to half of that peak value. The damped natural frequency can then be calculated using the formula: damped natural frequency 1 / (2 damping ratio time to half amplitude).
To determine the angular frequency from a graph, you can find the period of the wave by measuring the distance between two consecutive peaks or troughs. Then, you can calculate the angular frequency using the formula: angular frequency 2 / period.
To determine the wavelength from a graph, you can measure the distance between two consecutive peaks or troughs on the graph. This distance represents one full wavelength.
To determine the phase constant from a graph, identify the horizontal shift of the graph compared to the original function. The phase constant is the amount the graph is shifted horizontally.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
To determine the damped natural frequency from a graph, one can identify the peak of the response curve and measure the time it takes for the amplitude to decrease to half of that peak value. The damped natural frequency can then be calculated using the formula: damped natural frequency 1 / (2 damping ratio time to half amplitude).
To determine the angular frequency from a graph, you can find the period of the wave by measuring the distance between two consecutive peaks or troughs. Then, you can calculate the angular frequency using the formula: angular frequency 2 / period.
A graph that used the same one of the numbers more than once.
To determine the wavelength from a graph, you can measure the distance between two consecutive peaks or troughs on the graph. This distance represents one full wavelength.
To determine the initial value on a graph, look for the point where the graph intersects the y-axis. This point represents the initial value or starting point of the graph.
To determine the phase constant from a graph, identify the horizontal shift of the graph compared to the original function. The phase constant is the amount the graph is shifted horizontally.
By adding up the (one by one,) the frequency total in order to find the cumulative frequency, most commonly, you just then plot this on a cumulative frequency graph or box plot.
The answer depends on what the graph is of: the distribution function or the cumulative distribution function.
To determine velocity from an acceleration-time graph, you can find the area under the curve of the graph. This area represents the change in velocity over time. By calculating this area, you can determine the velocity at any given point on the graph.
To determine opportunity cost from a graph, you can look at the slope of the graph. The opportunity cost is represented by the ratio of the units of one good that must be given up to produce more units of another good. The steeper the slope of the graph, the higher the opportunity cost.
You would not use a graph to determine one person's height at a single point in time. You could use a line graph to track the height of a person over time. You could use a histogram to determine the heights of lots of people at one time.
If the graph is a function, no line perpendicular to the X-axis can intersect the graph at more than one point.