answersLogoWhite

0

Terminal velocity of an object can be determined by balancing the forces acting on it. When the force of gravity pulling the object down is equal to the force of air resistance pushing up, the object reaches its terminal velocity. This can be calculated using the object's weight, surface area, and air density.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Physics

How can one determine when terminal velocity is reached?

Terminal velocity is reached when the force of air resistance acting on a falling object is equal in magnitude to the force of gravity pulling the object down. This results in a net force of zero, causing the object to fall at a constant speed. Terminal velocity varies depending on the size, shape, and weight of the object.


How can one determine the position of an object based on its velocity?

One can determine the position of an object based on its velocity by integrating the velocity function over time. This will give the displacement of the object from its initial position.


How can one determine the relative velocity between two objects?

To determine the relative velocity between two objects, you can subtract the velocity of one object from the velocity of the other object. This will give you the relative velocity between the two objects.


How can one determine the rotational velocity of an object?

To determine the rotational velocity of an object, you can use the formula: rotational velocity angular displacement / time. This means you divide the angle the object rotates through by the time it takes to rotate that angle. The result will give you the rotational velocity of the object.


How can one determine the position of an object from a velocity graph?

To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.

Related Questions

How can one determine when terminal velocity is reached?

Terminal velocity is reached when the force of air resistance acting on a falling object is equal in magnitude to the force of gravity pulling the object down. This results in a net force of zero, causing the object to fall at a constant speed. Terminal velocity varies depending on the size, shape, and weight of the object.


How can one determine the position of an object based on its velocity?

One can determine the position of an object based on its velocity by integrating the velocity function over time. This will give the displacement of the object from its initial position.


What is the maximum terminal velocity on planet Jupiter?

There is no such thing as "maximum terminal velocity", neither on Jupiter nor hear on Earth. The "terminal velocity" depends on the specific object - and on the atmospheric conditions. For example, a very heavy object will typically have a larger terminal velocity than one that is very light; and near Earth's surface, the terminal velocity (for a given object) will be smaller than in the upper atmosphere, where there is less air resistance.


How can one determine the relative velocity between two objects?

To determine the relative velocity between two objects, you can subtract the velocity of one object from the velocity of the other object. This will give you the relative velocity between the two objects.


When air resistance balances weight the velocity becomes?

Terminal. It stays at that one velocity til the object hits the ground.


How can one determine the rotational velocity of an object?

To determine the rotational velocity of an object, you can use the formula: rotational velocity angular displacement / time. This means you divide the angle the object rotates through by the time it takes to rotate that angle. The result will give you the rotational velocity of the object.


How can one determine the position of an object from a velocity graph?

To determine the position of an object from a velocity graph, you can find the area under the velocity curve. The area represents the displacement of the object. The position can be calculated by integrating the velocity function over a specific time interval.


How can one determine the tangential velocity of an object in motion?

To determine the tangential velocity of an object in motion, you can use the formula: tangential velocity radius x angular velocity. The tangential velocity is the speed at which an object moves along its circular path. The radius is the distance from the center of the circle to the object, and the angular velocity is the rate at which the object rotates around the center. By multiplying the radius and angular velocity, you can calculate the tangential velocity of the object.


How can one determine the final vertical velocity of an object?

To determine the final vertical velocity of an object, you can use the equation: final velocity initial velocity (acceleration x time). This equation takes into account the initial velocity of the object, the acceleration due to gravity, and the time the object has been falling. By plugging in the values for these variables, you can calculate the final vertical velocity of the object.


How can one determine the vertical velocity of an object?

To determine the vertical velocity of an object, you can use the formula: vertical velocity initial vertical velocity (acceleration due to gravity x time). This formula takes into account the object's initial velocity and how gravity affects its motion over time.


How can one determine the force exerted by an object based on its velocity?

The force exerted by an object can be determined based on its velocity by using the formula: force mass x acceleration. When an object is moving at a certain velocity, its acceleration can be calculated using the change in velocity over time. By multiplying the mass of the object by its acceleration, one can determine the force exerted.


How can one determine the centripetal velocity of an object in motion?

To determine the centripetal velocity of an object in motion, you can use the formula: v r, where v is the centripetal velocity, r is the radius of the circular path, and is the angular velocity of the object. This formula relates the speed of the object to the radius of the circular path and how quickly the object is rotating around that path.