To determine velocity from momentum, you can use the formula: momentum mass x velocity. By rearranging the formula, you can solve for velocity by dividing momentum by mass. This will give you the velocity of an object based on its momentum and mass.
To determine velocity using momentum, you can use the formula: momentum mass x velocity. Rearrange the formula to solve for velocity: velocity momentum / mass. By dividing the momentum by the mass of the object, you can calculate its velocity.
To determine the final velocity of an object using the concept of momentum, you can use the equation: momentum mass x velocity. By calculating the initial momentum and final momentum of the object, you can then solve for the final velocity using the formula: final velocity final momentum / mass.
You can determine mass using momentum and velocity by using the formula: momentum = mass x velocity. Rearrange the formula to solve for mass as mass = momentum/velocity. Plug in the values for momentum and velocity to calculate the mass.
To determine velocity from impulse, you can use the formula: Impulse Force x Time Change in Momentum. By knowing the impulse and the mass of the object, you can calculate the change in momentum. Then, by dividing the change in momentum by the mass of the object, you can determine the velocity.
To determine the recoil velocity of an object, you can use the principle of conservation of momentum. This means that the total momentum before an event is equal to the total momentum after the event. By calculating the initial momentum of the object and the momentum of any other objects involved in the event, you can determine the recoil velocity of the object.
To determine velocity using momentum, you can use the formula: momentum mass x velocity. Rearrange the formula to solve for velocity: velocity momentum / mass. By dividing the momentum by the mass of the object, you can calculate its velocity.
To determine the final velocity of an object using the concept of momentum, you can use the equation: momentum mass x velocity. By calculating the initial momentum and final momentum of the object, you can then solve for the final velocity using the formula: final velocity final momentum / mass.
You can determine mass using momentum and velocity by using the formula: momentum = mass x velocity. Rearrange the formula to solve for mass as mass = momentum/velocity. Plug in the values for momentum and velocity to calculate the mass.
To determine velocity from impulse, you can use the formula: Impulse Force x Time Change in Momentum. By knowing the impulse and the mass of the object, you can calculate the change in momentum. Then, by dividing the change in momentum by the mass of the object, you can determine the velocity.
To determine the recoil velocity of an object, you can use the principle of conservation of momentum. This means that the total momentum before an event is equal to the total momentum after the event. By calculating the initial momentum of the object and the momentum of any other objects involved in the event, you can determine the recoil velocity of the object.
You need to know an object's mass and velocity to determine its momentum. Momentum is calculated as the product of an object's mass and its velocity.
To determine the final velocity after a collision, you can use the conservation of momentum principle. This principle states that the total momentum before the collision is equal to the total momentum after the collision. By calculating the initial momentum of the objects involved and setting it equal to the final momentum, you can solve for the final velocity.
An object's momentum is determined by its mass and velocity. The momentum of an object is calculated by multiplying its mass by its velocity.
To find the momentum of an object you must know the mass of the object and the velocity at which it travels. Example: A 50kg man runs at 10m/s. What is his momentum? Momentum = Mass x Velocity 50 x 10 = 500 kgm/s
Momentum= Mass X Velocity
Mass and velocity determine momentum, because mass multiplied by velocity equals momentum. in which there r few different cases like i. whether the atom is getting effected by surrondings . ii. or its not getting effected by its. surrondings (ideal case) and accordingly momentum values (momentum in case(i.) will be less comparitive case(ii.) :)
The momentum of an object is determined by its mass and velocity. Momentum is calculated by multiplying an object's mass by its velocity.