answersLogoWhite

0

The magnetic field can change the direction of a charged particle's movement, but it does not directly affect its speed.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

What is the scientific principle behind particle accelators?

particle accelerators work by accelerating a charged particle in a magnetic field where the lines of magnetic flux are such that the particle is accelerated into a circular path. This is so that the force produced by such a motion and magnetic field is perpendicular to both the lines of magnetic flux and the velocity of the particle. The stronger the magnetic field and the faster the particle is moving, the more of a force is required (i.e stronger magnetic field) to keep the particle accelerating. Only a charged particle is affected by a magnetic field so only charged particles can be used inside a particle accelerators (i.e protons and electrons.) neutrons have a charge of zero and are not affected by magnetic fields.


What is the speed of rotation of the magnetic field called?

The speed of rotation of the magnetic field is called magnetic flux. It is a measure of the flow of a magnetic field through a particular area.


Which of the two charged particles of the same mass but different velocity will be deflected the most in magnetic field and why?

The charged particle with the higher velocity will be deflected the most in a magnetic field. This is because the magnetic force experienced by a charged particle is directly proportional to its velocity. Therefore, a higher velocity particle will experience a greater magnetic force and be deflected more.


What is magnetic deflection senstivity?

Magnetic deflection sensitivity of a cathode ray oscilloscope (CRO) is defined as the amount of deflection of electron spot produced when a magnetic flux density of 1 Wb/m2 is applied. SM = (e / m )1\2 x 1\ (2V0) 1\2 x l x L


What is the radius of the ion's path in the magnetic field?

The radius of the ion's path in the magnetic field is determined by the ion's charge, speed, and the strength of the magnetic field.

Related Questions

Does an alpha particle and beta particle has the same speed in a magnetic field?

Alpha particles with the same energy as beta particles have much less speed, magnetic field or no.


What are three things that a magnetic field may do to moving charged particles?

Accelerate the particle but not beyond C, the speed of light Decelerate the particle Divert the particle's path.


What is the scientific principle behind particle accelators?

particle accelerators work by accelerating a charged particle in a magnetic field where the lines of magnetic flux are such that the particle is accelerated into a circular path. This is so that the force produced by such a motion and magnetic field is perpendicular to both the lines of magnetic flux and the velocity of the particle. The stronger the magnetic field and the faster the particle is moving, the more of a force is required (i.e stronger magnetic field) to keep the particle accelerating. Only a charged particle is affected by a magnetic field so only charged particles can be used inside a particle accelerators (i.e protons and electrons.) neutrons have a charge of zero and are not affected by magnetic fields.


What factors do not affect solubility of a solid?

For example the magnetic field, the wind speed, the gravitation.


What is the speed of rotation of the magnetic field called?

The speed of rotation of the magnetic field is called magnetic flux. It is a measure of the flow of a magnetic field through a particular area.


Which of the two charged particles of the same mass but different velocity will be deflected the most in magnetic field and why?

The charged particle with the higher velocity will be deflected the most in a magnetic field. This is because the magnetic force experienced by a charged particle is directly proportional to its velocity. Therefore, a higher velocity particle will experience a greater magnetic force and be deflected more.


Does a particle need to have an electrical charge to be used in a particle accelerator?

Yes, a particle used in a particle accelerator must have a charge to be useful in the device. Particle accelerators we use in high energy physics to investigate things all work by applying a moving or shifting magnetic field to accelerate charged particles. We speed these particles up by repeatedly "hitting" them with a magnetic field. Uncharged particles will not respond to this, and canot be used in the devices.


What happens if the electron enters the magnetic field parallel to B?

If an electron enters a magnetic field parallel to the field lines (i.e., parallel to B), it will not experience any deflection or force due to the magnetic field. This is because the force on a charged particle moving parallel to a magnetic field is zero.


A particle with a mass of 6.64 x 10-27 kg and a charge of plus 3.20 x 10-19 C is accelerated from rest through a potential difference of 2.45 x 106 V The particle then enters a uniform 1.60-T magnetic?

The kinetic energy gained by the particle due to the potential difference can be calculated using the formula KE = qV, where q is the charge and V is the potential difference. The kinetic energy can then be equated to the work done by the magnetic field, given by W = qvBd, where v is the velocity, B is the magnetic field, and d is the distance traveled in the magnetic field. Combining these equations can help determine the speed of the particle as it enters the magnetic field.


Why force exerted by a magnetic field on stationary elctric dipole is zero?

The force on a charge by a magnetic field is given by F = Bq v sin@ v - the speed of the charged particle with charge q. B - magnetic field induction in tesla. @ is the angle between the velocity vector and magnetic field vector. As dipole is stationary, the speed of charges is zero. So the force = 0 Hence the result.


What is magnetic deflection senstivity?

Magnetic deflection sensitivity of a cathode ray oscilloscope (CRO) is defined as the amount of deflection of electron spot produced when a magnetic flux density of 1 Wb/m2 is applied. SM = (e / m )1\2 x 1\ (2V0) 1\2 x l x L


When do charged particles accelerate in a magnetic field?

A charged particle is accelerated in magnetic field if it has a velocity. F = Q v x B, where v x B is cross-product of speed and magnetic flux vectors. According to Newton F = ma where you can find the acceleration if you know the mass.