answersLogoWhite

0

In a transverse wave, the particles of the medium move perpendicular to the direction of the wave, while in a longitudinal wave, the particles move parallel to the direction of the wave. This difference in particle movement affects how sound propagates in the medium.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

How does the motion of the medium differ between transverse and longitudinal waves?

In transverse waves, the particle motion is perpendicular to the direction of wave propagation, creating crests and troughs. In longitudinal waves, the particle motion is parallel to the direction of wave propagation, causing compressions and rarefactions in the medium.


How does the motion of the particles of medium differ between transverse and longitudinal waves?

In transverse waves, particles of the medium move perpendicular to the direction of wave propagation, whereas in longitudinal waves, particles move parallel to the direction of wave propagation. Transverse waves have a side-to-side motion, while longitudinal waves have a back-and-forth motion along the same axis as the wave.


How does the propagation of a longitudinal wave sound differ from that of a transverse wave?

The propagation of a longitudinal wave creates sound that moves in the same direction as the wave, like a slinky being pushed and pulled. In contrast, a transverse wave creates sound that moves perpendicular to the wave, like a rope being shaken side to side.


What do transverse waves and longitudnal waves have in common?

Transverse waves and longitudinal waves are both types of mechanical waves. They both transfer energy through a medium, but their motion and displacement of particles in the medium differ. In transverse waves, particles move perpendicular to the direction of wave propagation, while in longitudinal waves, particles move parallel to the direction of wave propagation.


How does the propagation of sound waves differ in terms of their direction of vibration - longitudinal or transverse?

Sound waves propagate differently based on their direction of vibration. Longitudinal waves vibrate parallel to the direction of wave propagation, causing particles to move back and forth in the same direction as the wave. Transverse waves, on the other hand, vibrate perpendicular to the direction of wave propagation, causing particles to move up and down or side to side.

Related Questions

How does the motion of the medium differ between transverse and longitudinal waves?

In transverse waves, the particle motion is perpendicular to the direction of wave propagation, creating crests and troughs. In longitudinal waves, the particle motion is parallel to the direction of wave propagation, causing compressions and rarefactions in the medium.


How does the motion of the particles of medium differ between transverse and longitudinal waves?

In transverse waves, particles of the medium move perpendicular to the direction of wave propagation, whereas in longitudinal waves, particles move parallel to the direction of wave propagation. Transverse waves have a side-to-side motion, while longitudinal waves have a back-and-forth motion along the same axis as the wave.


How does the propagation of a longitudinal wave sound differ from that of a transverse wave?

The propagation of a longitudinal wave creates sound that moves in the same direction as the wave, like a slinky being pushed and pulled. In contrast, a transverse wave creates sound that moves perpendicular to the wave, like a rope being shaken side to side.


What do transverse waves and longitudnal waves have in common?

Transverse waves and longitudinal waves are both types of mechanical waves. They both transfer energy through a medium, but their motion and displacement of particles in the medium differ. In transverse waves, particles move perpendicular to the direction of wave propagation, while in longitudinal waves, particles move parallel to the direction of wave propagation.


How does the propagation of sound waves differ in terms of their direction of vibration - longitudinal or transverse?

Sound waves propagate differently based on their direction of vibration. Longitudinal waves vibrate parallel to the direction of wave propagation, causing particles to move back and forth in the same direction as the wave. Transverse waves, on the other hand, vibrate perpendicular to the direction of wave propagation, causing particles to move up and down or side to side.


What are the different types of waves in physics and how do they differ from each other?

In physics, there are two main types of waves: transverse waves and longitudinal waves. Transverse waves move perpendicular to the direction of the wave, while longitudinal waves move parallel to the direction of the wave. Transverse waves have crests and troughs, while longitudinal waves have compressions and rarefactions. These differences in motion and structure make transverse and longitudinal waves distinct from each other.


In what direction does a longitudinal wave move and how does this movement differ from that of a transverse wave?

A longitudinal wave moves in the same direction as the wave energy, while a transverse wave moves perpendicular to the wave energy. This means that the particles in a longitudinal wave move back and forth parallel to the wave direction, while the particles in a transverse wave move up and down perpendicular to the wave direction.


How does the propagation of sound as a longitudinal wave differ from other types of wave propagation?

Sound propagation as a longitudinal wave differs from other types of wave propagation in that it involves the compression and rarefaction of particles in the medium through which it travels, rather than the oscillation of particles perpendicular to the direction of wave travel. This unique movement of particles allows sound waves to travel through solids, liquids, and gases.


How do transverse waves and longitudinal waves differ?

Transverse waves have particle movement perpendicular to the wave direction, while longitudinal waves have particle movement parallel to the wave direction. In transverse waves, vibrations occur perpendicular to the direction of energy transfer, while in longitudinal waves, vibrations occur parallel to the direction of energy transfer.


How does the expression for the velocity of the longitudinal wave differ from transverse wave?

The waves are the scalar and vector parts of Quaternion derivatives: [d/dr, DEL]2 [b,B] = The Longitudinal wave (d2/dr2 - DEL2)b - 2d/dr DEL.B is a scalar wave The Transverse wave (d2/dr2 - DEL2)B + 2d/dr( DEL b + DELxB) is a vector wave.


How does natural vegetative propagation differ from artificial vegetative propagation?

bla bla bla


How do sound waves differ from other types of waves, and what makes them unique as transverse waves?

Sound waves are longitudinal waves, meaning they travel by compressing and expanding the medium they pass through, such as air. This is different from transverse waves, like light waves, which oscillate perpendicular to their direction of travel. Sound waves are unique as transverse waves because they require a medium to travel through, such as air, water, or solids, whereas transverse waves can travel through a vacuum.