answersLogoWhite

0

The work done by the gas during the expansion is equal to the area under the pressure-volume curve on a graph of the process.

User Avatar

AnswerBot

4mo ago

What else can I help you with?

Continue Learning about Physics

What is the relationship between the work done during an isothermal expansion and the change in internal energy of a system?

During an isothermal expansion, the work done is equal to the change in internal energy of the system.


What is the relationship between reversible adiabatic expansion work and the change in internal energy of a system?

During reversible adiabatic expansion, the work done by the system is equal to the change in internal energy.


How is adiabatic expansion work defined and calculated in thermodynamics?

Adiabatic expansion in thermodynamics is a process where no heat is exchanged with the surroundings. It is defined as the expansion of a gas without any heat entering or leaving the system. The work done during adiabatic expansion can be calculated using the formula: work -PV, where P is the pressure and V is the change in volume.


What is the work done in an isobaric expansion?

The work done in an isobaric expansion is given by the formula: work = pressure x change in volume. This is because in an isobaric process, the pressure remains constant while the volume changes, resulting in work being done on or by the system.


What is the relationship between the work done by an expanding gas and the change in its internal energy?

The work done by an expanding gas is directly related to the change in its internal energy. When a gas expands, it does work on its surroundings, which can lead to a change in its internal energy. This change in internal energy is a result of the work done by the gas during the expansion process.

Related Questions

What is the relationship between the work done during an isothermal expansion and the change in internal energy of a system?

During an isothermal expansion, the work done is equal to the change in internal energy of the system.


What is the relationship between reversible adiabatic expansion work and the change in internal energy of a system?

During reversible adiabatic expansion, the work done by the system is equal to the change in internal energy.


What is the relationship between enthalpy and the isothermal expansion process?

In an isothermal expansion process, the enthalpy remains constant. This means that the heat energy exchanged during the expansion is equal to the work done by the system.


How can one calculate the work done during an adiabatic reversible expansion process?

To calculate the work done during an adiabatic reversible expansion process, you can use the formula: work -nRT ln(V2/V1), where n is the number of moles of gas, R is the gas constant, T is the temperature, and V1 and V2 are the initial and final volumes of the gas.


How is adiabatic expansion work defined and calculated in thermodynamics?

Adiabatic expansion in thermodynamics is a process where no heat is exchanged with the surroundings. It is defined as the expansion of a gas without any heat entering or leaving the system. The work done during adiabatic expansion can be calculated using the formula: work -PV, where P is the pressure and V is the change in volume.


What is the work done in an isobaric expansion?

The work done in an isobaric expansion is given by the formula: work = pressure x change in volume. This is because in an isobaric process, the pressure remains constant while the volume changes, resulting in work being done on or by the system.


Expansion happens because?

there is too much pressure in a system. example, a system which has done work and releases heat will expand itself


What is the relationship between the work done by an expanding gas and the change in its internal energy?

The work done by an expanding gas is directly related to the change in its internal energy. When a gas expands, it does work on its surroundings, which can lead to a change in its internal energy. This change in internal energy is a result of the work done by the gas during the expansion process.


What is the relationship between the work done and the expansion of gas in a thermodynamic system?

The work done in a thermodynamic system is directly related to the expansion of gas. When gas expands in a system, it can perform work by pushing against a piston or moving a turbine. This work done is a result of the gas expanding and exerting a force on its surroundings.


What is free expansion in thermodynamics?

In free expansion, the external pressure is zero, i.e. work done is zero. Accordingly, free expansion is also called irreversible adiabatic expansion.


What type of work is performed during the expansion of the gas?

During the expansion of gas, work is performed as the gas pushes against a piston or moves a turbine, resulting in the transfer of energy.


Why cp and cv have different values?

Cv is a for a constant volume, and there is therefore no work done in the expansion whereas as Cp accounts for the work done by the gas during its expansion, as well as the change in its internal energy. Thusly Cp is generally bigger than Cv. Intuitively this would be very simple to work out yourself. We used to have to work this out ourselves back in my day, not just resort to cheap answers on the interweb.