In order to determine if equilibrium is stable or unstable, you can analyze the system's response to small disturbances. If the system returns to its original state after a disturbance, it is stable. If the system moves further away from equilibrium after a disturbance, it is unstable.
No, not all objects at equilibrium are stable. There are two types of equilibrium: stable equilibrium, where a system returns to its original state when disturbed, and unstable equilibrium, where a system moves away from its original state when disturbed. Objects at unstable equilibrium are not stable.
The conditions that determine whether a system is in stable, unstable, or neutral equilibrium depend on how the system responds to disturbances. In stable equilibrium, the system returns to its original state after a disturbance. In unstable equilibrium, the system moves further away from its original state after a disturbance. In neutral equilibrium, the system remains in its new state after a disturbance.
In a system, unstable equilibrium occurs when a small disturbance causes the system to move further away from its original position, while stable equilibrium occurs when a small disturbance causes the system to return to its original position. The key difference lies in how the system responds to disturbances, with unstable equilibrium leading to further movement away from equilibrium and stable equilibrium leading to a return to equilibrium.
In a system, stable equilibrium occurs when a small disturbance causes the system to return to its original state. Unstable equilibrium, on the other hand, occurs when a small disturbance causes the system to move away from its original state.
In physics, stable equilibrium refers to a state where a system returns to its original position after being disturbed, while unstable equilibrium is a state where a system moves further away from its original position when disturbed.
Unstable.
No, not all objects at equilibrium are stable. There are two types of equilibrium: stable equilibrium, where a system returns to its original state when disturbed, and unstable equilibrium, where a system moves away from its original state when disturbed. Objects at unstable equilibrium are not stable.
The conditions that determine whether a system is in stable, unstable, or neutral equilibrium depend on how the system responds to disturbances. In stable equilibrium, the system returns to its original state after a disturbance. In unstable equilibrium, the system moves further away from its original state after a disturbance. In neutral equilibrium, the system remains in its new state after a disturbance.
In a system, unstable equilibrium occurs when a small disturbance causes the system to move further away from its original position, while stable equilibrium occurs when a small disturbance causes the system to return to its original position. The key difference lies in how the system responds to disturbances, with unstable equilibrium leading to further movement away from equilibrium and stable equilibrium leading to a return to equilibrium.
In a system, stable equilibrium occurs when a small disturbance causes the system to return to its original state. Unstable equilibrium, on the other hand, occurs when a small disturbance causes the system to move away from its original state.
In physics, stable equilibrium refers to a state where a system returns to its original position after being disturbed, while unstable equilibrium is a state where a system moves further away from its original position when disturbed.
In a system, stable equilibrium occurs when a small disturbance causes the system to return to its original state, while unstable equilibrium occurs when a small disturbance causes the system to move away from its original state.
The factors that determine whether a system will be in stable or unstable equilibrium include the system's internal forces, external influences, and the system's ability to return to its original state after a disturbance.
There are three types of equilibrium: stable equilibrium, where a system returns to its original state after a disturbance; unstable equilibrium, where a system moves further away from its original state after a disturbance; and neutral equilibrium, where a system remains in its new state after a disturbance.
the antonym of stable is unstable
Yes, the equilibrium is stable.
If the center of gravity of an object falls below its support base, it is in stable equilibrium. If the center of gravity falls outside the support base, it is in unstable equilibrium. You can determine the stability by assessing the relationship between the object's center of gravity and its base of support.