answersLogoWhite

0

Decreasing the wavelength of light will decrease the fringe spacing in an interference pattern. This is because fringe spacing is directly proportional to the wavelength of light used in the interference pattern.

User Avatar

AnswerBot

3mo ago

What else can I help you with?

Continue Learning about Physics

How does interference pattern change when wavelength of light is used?

Shorter wavelengths produce interference patterns with narrower fringes and greater separation between them, while longer wavelengths produce interference patterns with wider fringes and smaller separation between them. The spacing of fringes is proportional to the wavelength of light.


What is the fringe spacing equation used to calculate the distance between fringes in an interference pattern?

The fringe spacing equation used to calculate the distance between fringes in an interference pattern is: textFringe Spacing fraclambda cdot Dd Where: Fringe Spacing is the distance between adjacent fringes (lambda) is the wavelength of the light D is the distance between the slits and the screen d is the distance between the two slits or sources of light


What is the relationship between the ratio of the distance between two slits and the screen (d) to the wavelength of light () in the interference diffraction phenomenon?

In the interference diffraction phenomenon, the relationship between the ratio of the distance between two slits and the screen (d) to the wavelength of light () determines the pattern of interference fringes observed on the screen. This relationship affects the spacing and intensity of the fringes, with smaller ratios leading to wider spacing and more distinct fringes.


Monochromatic light passes through 2 parallel slits forms an interference pattern on screen As the distance between the 2 slits is decreased the distance between light bands in the pattern?

The distance between the light bands in the interference pattern increases when the distance between the two slits is decreased. This is because decreasing the distance between the slits results in a larger angle of diffraction, leading to a wider spacing between the interference fringes on the screen.


What is the fringe spacing formula used to calculate the distance between interference fringes in a double-slit experiment?

The fringe spacing formula used to calculate the distance between interference fringes in a double-slit experiment is given by the equation: d L / D, where d is the fringe spacing, is the wavelength of light, L is the distance between the double-slit and the screen, and D is the distance between the two slits.

Related Questions

How does interference pattern change when wavelength of light is used?

Shorter wavelengths produce interference patterns with narrower fringes and greater separation between them, while longer wavelengths produce interference patterns with wider fringes and smaller separation between them. The spacing of fringes is proportional to the wavelength of light.


What is the fringe spacing equation used to calculate the distance between fringes in an interference pattern?

The fringe spacing equation used to calculate the distance between fringes in an interference pattern is: textFringe Spacing fraclambda cdot Dd Where: Fringe Spacing is the distance between adjacent fringes (lambda) is the wavelength of the light D is the distance between the slits and the screen d is the distance between the two slits or sources of light


What is the relationship between the ratio of the distance between two slits and the screen (d) to the wavelength of light () in the interference diffraction phenomenon?

In the interference diffraction phenomenon, the relationship between the ratio of the distance between two slits and the screen (d) to the wavelength of light () determines the pattern of interference fringes observed on the screen. This relationship affects the spacing and intensity of the fringes, with smaller ratios leading to wider spacing and more distinct fringes.


Monochromatic light passes through 2 parallel slits forms an interference pattern on screen As the distance between the 2 slits is decreased the distance between light bands in the pattern?

The distance between the light bands in the interference pattern increases when the distance between the two slits is decreased. This is because decreasing the distance between the slits results in a larger angle of diffraction, leading to a wider spacing between the interference fringes on the screen.


What is the fringe spacing formula used to calculate the distance between interference fringes in a double-slit experiment?

The fringe spacing formula used to calculate the distance between interference fringes in a double-slit experiment is given by the equation: d L / D, where d is the fringe spacing, is the wavelength of light, L is the distance between the double-slit and the screen, and D is the distance between the two slits.


How is the spacing of the water waves related to wavelength?

The spacing of water waves is half of the wavelength. This means that the distance between two adjacent wave crests or troughs is equal to half of the wavelength of the wave.


What happens to the spacing of the bright spots in a diffraction pattern if the slit spacing becomes smaller?

As the slit spacing becomes smaller, the spacing of the bright spots in a diffraction pattern increases.


How do you calculate wavelength from diffraction grating?

You can calculate the wavelength of light using a diffraction grating by using the formula: λ = dsinθ/m, where λ is the wavelength of light, d is the spacing between the grating lines, θ is the angle of diffraction, and m is the order of the diffracted light. By measuring the angle of diffraction and knowing the grating spacing, you can determine the wavelength.


Can visible light produce interference Fringes.Explain?

Yes, visible light can produce interference fringes when it passes through two closely spaced slits or a diffraction grating. This phenomenon, known as interference, occurs when light waves overlap and either reinforce or cancel each other out, leading to the observed pattern of fringes. The spacing of the fringes is determined by the wavelength of the light and the distance between the slits or grating.


How can the interplanar spacing calculation be performed for a crystal lattice structure?

To calculate interplanar spacing in a crystal lattice structure, you can use Bragg's Law, which relates the angle of diffraction to the spacing between crystal planes. This formula is given by: n 2d sin(), where n is the order of the diffraction peak, is the wavelength of the X-ray used, d is the interplanar spacing, and is the angle of diffraction. By rearranging this formula, you can solve for the interplanar spacing (d) by measuring the angle of diffraction and the wavelength of the X-ray.


To find wavelength of spectral line using diffraction grating?

To find the wavelength of a spectral line using a diffraction grating, you can use the formula: dsin(θ) = mλ, where d is the spacing of the grating lines, θ is the angle of diffraction, m is the order of the spectral line, and λ is the wavelength of the light. By measuring the angle of diffraction of the spectral line and knowing the grating spacing, you can calculate the wavelength of the light.


Can lattice space of NaCl crystal be determined by diffraction experiment with sodium yellow light?

No, the lattice spacing of a NaCl crystal cannot be determined with sodium yellow light alone because the wavelength of light used for diffraction needs to match the spacing between planes in the crystal lattice. Since the lattice spacing of NaCl is much smaller than the wavelength of sodium yellow light, other types of radiation such as X-rays are typically used for diffraction experiments to accurately determine the lattice spacing.