Momentum is a simple product of mass time velocity. So if the velocity doubles the momentum doubles.
If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.
When the velocity of a body is doubled, its acceleration remains the same if the direction of motion remains constant. Velocity is the rate of change of position of an object over time, while acceleration is the rate of change of velocity over time. If the velocity is doubled while the direction remains constant, the acceleration does not change.
Kinetic Energy = (1/2)*(mass)*(velocity)2 If you double the mass, then the kinetic energy will double If you double the velocity, the kinetic energy will increase by a factor of 4
The momentum of the bus would double if its mass is doubled while keeping its velocity constant. Momentum is directly proportional to mass, so doubling the mass would result in a doubling of momentum as long as the velocity remains the same.
Kinetic energy will increase by a factor of four. Kinetic energy is proportional to the square of velocity, so if velocity is doubled, kinetic energy increases by four times. Since mass remains the same, there is no impact on kinetic energy from changes in mass.
Twice the mass --> twice the kinetic energy.
If the mass of the object is doubled but the velocity remains the same, the kinetic energy of the object will also double. Kinetic energy is directly proportional to the mass of the object, so doubling the mass will result in a doubling of kinetic energy.
When the velocity of a body is doubled, its acceleration remains the same if the direction of motion remains constant. Velocity is the rate of change of position of an object over time, while acceleration is the rate of change of velocity over time. If the velocity is doubled while the direction remains constant, the acceleration does not change.
assuming its not starting at zero, if an object velocity is doubled, its kinetic energy (KE) is four times. If its trebled , its KE is nine times equation : KE = (m*v^2)/2 joules m=mass v=velocity
Kinetic Energy = (1/2)*(mass)*(velocity)2 If you double the mass, then the kinetic energy will double If you double the velocity, the kinetic energy will increase by a factor of 4
The momentum of the bus would double if its mass is doubled while keeping its velocity constant. Momentum is directly proportional to mass, so doubling the mass would result in a doubling of momentum as long as the velocity remains the same.
Kinetic energy will increase by a factor of four. Kinetic energy is proportional to the square of velocity, so if velocity is doubled, kinetic energy increases by four times. Since mass remains the same, there is no impact on kinetic energy from changes in mass.
If the mass of an object is doubled, its impulse will also double if the change in velocity remains the same. Impulse is equal to the change in momentum, so if both mass and velocity double, the impulse will quadruple.
When the mass of a moving object is doubled and its speed remains the same, its momentum also doubles. Momentum is directly proportional to mass, so doubling the mass will result in a doubling of the momentum regardless of the speed.
When mass increases, velocity remains constant if the force applied remains constant. However, if the applied force stays the same, an increase in mass will require more force to achieve the same acceleration, which may lead to a decrease in velocity.
If the density remains the same and the thickness of the coin is doubled, the mass of the coin would also double. This is because density is mass divided by volume, and if the thickness (volume) is doubled while density remains constant, the mass must double to maintain the same density value.
Acceleration remains the same. Remember that Force equals Mass times Acceleration, or Acceleration equals Force divided by Mass. So, if both Force and Mass double, Force Divided by Mass remains the same.