answersLogoWhite

0

Continuity equations describe the movement of constant. Bernoulli's equation also relates to movement, the flow of liquids. For some situations, where the liquid flowing is a constant, both a continuity equation and Bernoulli's equation can be applied.

User Avatar

Wiki User

11y ago

What else can I help you with?

Continue Learning about Physics

What is the significance of the continuity equation in describing the flow of incompressible fluids?

The continuity equation is important in describing the flow of incompressible fluids because it states that the mass flow rate of a fluid remains constant along a pipe or channel, ensuring that mass is conserved. This equation helps to understand how fluids move and behave in various systems, such as in pipelines or rivers, by showing how the flow rate is related to the fluid's velocity and cross-sectional area.


What is the equation of continuity?

The Equation of Continuity is the four dimensional derivative of a four dimensional variable set to zero. This is also called the limit equation and the Boundary equation, and the Homeostasis Equation. The Continuity Equation is also called the Invariant Equation or Condition. The most famous equation that is in fact a continuity Equation is Maxwell's Electromagnetic equations. (d/dR + Del)(Br + Bv) = (dBr/dR -Del.Bv) + (dBv/dR + DelxBv + Del Br) = 0 This gives two equations the real Continuity Equation: 0=(dBr/dR - Del.Bv) and the vector Continuity Equation: 0=(dBv/dR + Del Br) This Equation will be more familiar when R=ct and dR=cdt and cB = E then 0=(dBr/dt - Del.Ev) and 0=(dBv/dt + Del Er) The Continuity Equation says the sum of the derivatives is zero. The four dimensional variable has two parts a real part Br and a vector part Bv. The Continuity Equation is the sum of the real derivatives is zero and the sum of the vector derivatives is zero. The term DelxBv is zero at Continuity because this term is perpendicular to both the other two terms and makes it impossible geometrically for the vectors to sum to zero unless it is zero. Only if the DelxBv=0 can the vectors sum to zero. This situation occurs when the other two terms are parallel or anti-parallel. If anti-parallel then dBv/Dr is equal and opposite to Del Br and the vectors sum to zero. This is Newton's Equal and Opposite statement in his 3rd Law and is a geometrical necessity for the vectors to sum to zero.. Many Equations of Physics have misrepresented the Continuity Equation and others have not recognized the continuity Equation as in Maxwell's Equations. The Continuity Equation is probably the most important equation in science! The Four dimensional space of science is a quaternion non-commutative (non-parallel) space defined by William Rowan Hamilton in 1843, (i,j,k and 1), with rules i^2=j^2=k^2=-1.


What is the physical meaning of the continuity equation?

The continuity equation in fluid dynamics states that the total mass entering a system must equal the total mass leaving the system, accounting for any accumulation within the system. This equation describes the conservation of mass for a fluid flow, showing how the flow velocity and cross-sectional area of the fluid affect the mass flow rate.


What is the significance of the continuity equation in maintaining mass conservation in compressible flow?

The continuity equation is important in compressible flow because it ensures that mass is conserved. It states that the rate of mass entering a system must equal the rate of mass leaving the system, helping to maintain balance and accuracy in calculations for compressible fluids.


What is continuity equation tell us?

The continuity equation states that in a steady flow, the mass entering a system must equal the mass leaving the system. It expresses the principle of conservation of mass and is used to analyze fluid flow in various engineering applications. The equation is often written in the form of mass flow rate or velocity profile to describe how fluid moves through a system.

Related Questions

What are the three applications of bernoullis equation?

Airplane,ventrimeter,andpump


What is bernoullis equation of fluid in a pipe?

A1V1=A2V2 or V2=(A1/A2)(V1)


What is continuity equation in fluid mechanics?

Area*Velocity=Constant


When is the speed of a fluid maximum in a venturi meter?

from the continuity equation A1v1 = A2v2 according to the continuity equation as the area decreases the velocity of the flow of the liquid increases and hence maximum velocity can be obtained at its throat


What is continuity equation for compressible fluids?

The continuity equation for compressible fluids states that the rate of change of density (ρ) in a fluid is equal to -∇⋅(ρu), where ρ is density, u is velocity, and ∇⋅ is the divergence operator. This equation is derived from the conservation of mass principle in fluid dynamics.


What is the significance of the continuity equation in describing the flow of incompressible fluids?

The continuity equation is important in describing the flow of incompressible fluids because it states that the mass flow rate of a fluid remains constant along a pipe or channel, ensuring that mass is conserved. This equation helps to understand how fluids move and behave in various systems, such as in pipelines or rivers, by showing how the flow rate is related to the fluid's velocity and cross-sectional area.


What is the equation of continuity?

The Equation of Continuity is the four dimensional derivative of a four dimensional variable set to zero. This is also called the limit equation and the Boundary equation, and the Homeostasis Equation. The Continuity Equation is also called the Invariant Equation or Condition. The most famous equation that is in fact a continuity Equation is Maxwell's Electromagnetic equations. (d/dR + Del)(Br + Bv) = (dBr/dR -Del.Bv) + (dBv/dR + DelxBv + Del Br) = 0 This gives two equations the real Continuity Equation: 0=(dBr/dR - Del.Bv) and the vector Continuity Equation: 0=(dBv/dR + Del Br) This Equation will be more familiar when R=ct and dR=cdt and cB = E then 0=(dBr/dt - Del.Ev) and 0=(dBv/dt + Del Er) The Continuity Equation says the sum of the derivatives is zero. The four dimensional variable has two parts a real part Br and a vector part Bv. The Continuity Equation is the sum of the real derivatives is zero and the sum of the vector derivatives is zero. The term DelxBv is zero at Continuity because this term is perpendicular to both the other two terms and makes it impossible geometrically for the vectors to sum to zero unless it is zero. Only if the DelxBv=0 can the vectors sum to zero. This situation occurs when the other two terms are parallel or anti-parallel. If anti-parallel then dBv/Dr is equal and opposite to Del Br and the vectors sum to zero. This is Newton's Equal and Opposite statement in his 3rd Law and is a geometrical necessity for the vectors to sum to zero.. Many Equations of Physics have misrepresented the Continuity Equation and others have not recognized the continuity Equation as in Maxwell's Equations. The Continuity Equation is probably the most important equation in science! The Four dimensional space of science is a quaternion non-commutative (non-parallel) space defined by William Rowan Hamilton in 1843, (i,j,k and 1), with rules i^2=j^2=k^2=-1.


How do jet engines provide a forward thrust for an airplane by using the continuity Equation?

they move


What has the author Ph W Zettler-Seidel written?

Ph. W. Zettler-Seidel has written: 'Nomograms for three ramjet performance equations (continuity equation, pressure equation, combustion equation)'


On which scientific principle does airplane works?

Bernoullis principle


How equation of continuity applied on rocket?

in rockets the area of crossection for the ejection of smoke is made small, so according to the equation of continuity the speed of gases increases. this leads to raise the speed (and momentum) of the rocket, and chamge in momentum becomes rapid. as change in momentum gives force, the force on the the rocket increases and it flies fast.


What is the physical meaning of the continuity equation?

The continuity equation in fluid dynamics states that the total mass entering a system must equal the total mass leaving the system, accounting for any accumulation within the system. This equation describes the conservation of mass for a fluid flow, showing how the flow velocity and cross-sectional area of the fluid affect the mass flow rate.