The laws of conservation of mass and conservation of energy are similar in that both state that the total amount of mass or energy in a closed system remains constant over time. However, the conservation of mass applies specifically to mass, while the conservation of energy applies to energy in its various forms (kinetic, potential, etc.).
Friction is a force that resists relative motion between two surfaces, leading to energy loss in the form of heat. The laws of conservation of energy state that energy cannot be created or destroyed, only transferred or transformed from one form to another. Friction causes energy to be dissipated, leading to a loss of mechanical energy in a system.
In both cases, something is conserved - it doesn't change over time.Also, mass and energy are equivalent. If something has energy, it has mass, and vice versa.
Both conservation laws are applied. The conservation of momentum and conservation of energy. However, in an inelastic collision, kinetic energy is not conserved. But total energy IS CONSERVED and the principle of conservation of energy does hold.
The most relevant conservation law in this case is probably the Law of Conservation of Energy. The computer uses electrical energy, most of which is eventually converted into heat. A small part will go out as sound, and as low-frequency electromagnetic waves.
The concept that energy cannot be created or destroyed is a fundamental principle known as the Law of Conservation of Energy. It is a universal law of physics that applies in all states and is not specific to any particular state's energy laws.
There are many different laws of conservation, but they are essentially the same. For this example I will use energy. The laws of conservation of energy say that energy in = energy out. This is to say that energy cannot be destroyed or created.
No, those are two separate conservation laws. Charge is not energy. They are entirely different things.
In both cases, something is conserved - it doesn't change over time.Also, mass and energy are equivalent. If something has energy, it has mass, and vice versa.
di ko alam....
Friction is a force that resists relative motion between two surfaces, leading to energy loss in the form of heat. The laws of conservation of energy state that energy cannot be created or destroyed, only transferred or transformed from one form to another. Friction causes energy to be dissipated, leading to a loss of mechanical energy in a system.
There are many laws of conservation. Some of the better-known ones are the law of conservation of energy, of momentum, and of rotational momentum.There are many laws of conservation. Some of the better-known ones are the law of conservation of energy, of momentum, and of rotational momentum.There are many laws of conservation. Some of the better-known ones are the law of conservation of energy, of momentum, and of rotational momentum.There are many laws of conservation. Some of the better-known ones are the law of conservation of energy, of momentum, and of rotational momentum.
kininam di namin alam
The similarity is the "conservation" part - there is something that doesn't change over time.And of course, according to Nöther's theorem, that is the result of a symmetry of nature. * In the case of conservation of energy, time symmetry (the fact that the laws of physics don't change over time). * In the case of conservation of charge, gauge invariance.
In both cases, something is conserved - it doesn't change over time.Also, mass and energy are equivalent. If something has energy, it has mass, and vice versa.
There are several conservation laws; they were discovered and expanded gradually, over time. In modern physics, several conservation laws are derived from Nöther's Theorem. For example, the law of conservation of momentum is related to the fact that physical laws are the same in different parts of the Universe, whereas the law of conservation of energy is related to the physical laws being the same at different times. (This is basically advanced math, so I can't explain the "why", and if I could, you would probably not understand it - but if you want to try, do some reading on Noether's Theorem.)
Both conservation laws are applied. The conservation of momentum and conservation of energy. However, in an inelastic collision, kinetic energy is not conserved. But total energy IS CONSERVED and the principle of conservation of energy does hold.
The most relevant conservation law in this case is probably the Law of Conservation of Energy. The computer uses electrical energy, most of which is eventually converted into heat. A small part will go out as sound, and as low-frequency electromagnetic waves.