Transverse waves and compressional waves are both types of mechanical waves that transfer energy through a medium. The main difference is in the direction of particle motion: transverse waves have particles that move perpendicular to the wave's direction, while compressional waves have particles that move parallel to the wave's direction.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.
Compressional waves cause particles in a medium to move parallel to the direction of the wave, while transverse waves cause particles to move perpendicular to the direction of the wave. Sound waves are an example of compressional waves, while light waves are an example of transverse waves.
Light waves are transverse waves, meaning that the oscillations of the wave occur perpendicular to the direction of wave propagation. This is in contrast to compressional waves, where the oscillations are parallel to the direction of propagation, such as in sound waves.
Electromagnetic waves are transverse waves. This means that the oscillations of the electric and magnetic fields that make up the wave occur perpendicular to the direction of wave propagation. Unlike compressional waves, electromagnetic waves do not require a medium to travel through.
Transverse waves are alike longitudinal waves in that they both transfer energy, but transverse waves move perpendicular to the direction of the wave, while longitudinal waves move parallel to the direction of the wave. Transverse waves are characterized by crests and troughs, while longitudinal waves have compressions and rarefactions.
Electromagnetic waves can be either transverse or compressional, depending on their polarization. Transverse waves have oscillations perpendicular to the direction of propagation, while compressional waves have oscillations parallel to the direction of propagation. For example, light waves are transverse, while sound waves are compressional.
Compressional waves cause particles in a medium to move parallel to the direction of the wave, while transverse waves cause particles to move perpendicular to the direction of the wave. Sound waves are an example of compressional waves, while light waves are an example of transverse waves.
Seismic waves can be either transverse or compressional. P-waves are compressional waves that travel fastest, while S-waves are transverse waves that travel slower. Both types of waves are generated by earthquakes and used to study the Earth's interior.
Compressional, gasses can be compressed but cannot be wiggled side to side.
Light waves are transverse waves, meaning that the oscillations of the wave occur perpendicular to the direction of wave propagation. This is in contrast to compressional waves, where the oscillations are parallel to the direction of propagation, such as in sound waves.
Transverse.
Electromagnetic waves are transverse waves. This means that the oscillations of the electric and magnetic fields that make up the wave occur perpendicular to the direction of wave propagation. Unlike compressional waves, electromagnetic waves do not require a medium to travel through.
Sound is a compressional wave.
Transverse waves are alike longitudinal waves in that they both transfer energy, but transverse waves move perpendicular to the direction of the wave, while longitudinal waves move parallel to the direction of the wave. Transverse waves are characterized by crests and troughs, while longitudinal waves have compressions and rarefactions.
Transverse and Compressional electromagetic waves Another opinion: No electromagnetic waves are compressional waves. They're all transverse. I think what the question was looking for is: -- Heat and visible light -- Radio waves and X-rays -- Ultraviolet and gamma rays etc.
Sunshine is classified as a transverse wave because it oscillates perpendicular to the direction of its propagation, similar to light waves. Compressional waves, on the other hand, oscillate parallel to the direction of their propagation.
Both transverse and compressional waves are types of mechanical waves that transfer energy through a medium. They both involve oscillations of particles in the medium. The speed of both types of waves depends on the properties of the medium through which they travel.