The large mass can have proportionately more force applied to it than to the smaller mass.
well if it has little mass it has little weight and if you have a lot of mass the possibility of it would be that it weights a lot
When you apply a force to a mass you produce acceleration. "Tiny" and "large" are not well defined here, but the basic equation is F = ma, so if the forces are proportional to the masses in each case (for example, a 0.1 N force applied to a 0.1 g object and a 1000 N force applied to a 1000 g object) then you will produce the same acceleration for both objects.
Increasing the acceleration of a small mass would typically require more force compared to decreasing its acceleration. This is because acceleration is directly proportional to force according to Newton's second law (F = ma), so to increase acceleration, more force needs to be applied. Conversely, reducing acceleration would require applying less force.
Small force on small mass :When we exhale the air the force of exhaled air is less. Tiny particles of less masses are present in the nearer air and they start moving with large velocity. On Large mass : it's well explained in pascal's law. From that we can apply small force on larger mass .
The same force applied to a small mass will cause a larger acceleration compared to a large mass since acceleration is inversely proportional to mass (F=ma). This means the small mass will experience a greater change in velocity in response to the force compared to the large mass.
well if it has little mass it has little weight and if you have a lot of mass the possibility of it would be that it weights a lot
When you apply a force to a mass you produce acceleration. "Tiny" and "large" are not well defined here, but the basic equation is F = ma, so if the forces are proportional to the masses in each case (for example, a 0.1 N force applied to a 0.1 g object and a 1000 N force applied to a 1000 g object) then you will produce the same acceleration for both objects.
Increasing the acceleration of a small mass would typically require more force compared to decreasing its acceleration. This is because acceleration is directly proportional to force according to Newton's second law (F = ma), so to increase acceleration, more force needs to be applied. Conversely, reducing acceleration would require applying less force.
Small force on small mass :When we exhale the air the force of exhaled air is less. Tiny particles of less masses are present in the nearer air and they start moving with large velocity. On Large mass : it's well explained in pascal's law. From that we can apply small force on larger mass .
The same force applied to a small mass will cause a larger acceleration compared to a large mass since acceleration is inversely proportional to mass (F=ma). This means the small mass will experience a greater change in velocity in response to the force compared to the large mass.
Acceleration is a net force that is inversely dependent on mass, therefore if an object's mass decreases, acceleration increases.
Gravitationally, the same force does not affect a small mass and a large mass.The small mass is acted upon by a smaller gravitational force, and the large massis acted upon by a larger gravitational force. The result is that the small mass andthe large mass fall with the same acceleration, and meet the ground with the samespeed. During the fall, onlookers typically nudge each other and remark to each other:"My word! The large mass weighs more than the small mass!" They are correct in theirimpression, and the scientific reason behind their perspicacious observation is the factthat the gravitational force acting on the large mass is greater than the gravitationalforce acting on the small mass.
If the mass of an object increases, what happens to the acceleration?
As mass increases acceleration decreases.
It depends on the force. The acceleration due to gravity (for small objects) is essentially independent of mass, although air friction may be worse for very small objects. If, however, you have a constant force. F = MA Force = Mass * Acceleration. Divide each side by mass and you get: Acceleration = (Force / Mass) So, for constant force, the more mass an object has, the less acceleration. Or, you could say that for constant force, the acceleration is inversely proportional to the mass.
The mass and acceleration of an object determines its momentum, which is the product of mass and velocity. Momentum is a vector quantity that describes the motion of an object.
The acceleration of the object increases.