This happens during boiling and freezing the energy being absorbed is going into making the state change.
The temperature of a substance can remain the same during absorbing thermal energy if the substance is undergoing a phase change, such as melting or boiling. During a phase change, the absorbed thermal energy goes into breaking intermolecular bonds rather than increasing the temperature. Once the phase change is complete, the temperature will resume rising as the substance absorbs more thermal energy.
That happens, for example, when ice melts. In this case, energy is spent to break the bonds between the water molecules. In other words, the kinetic energy (movement) of the water molecules doesn't increase, but its potential energy does.
That can't happen, unless the object is losing thermal energy out the back doorat the same rate as it's absorbing thermal energy in front where you're watching.There's no getting around the rules:More thermal energy inside = higher temperature.Less thermal energy inside = lower temperature.Excuse me, I just thought of the exception ... that's when the substance is changingstate, between solid / liquid / gas.The reason is that, for example, it takes more thermal energy for the moleculesof water to act like a liquid than it takes for them to act like a solid, even thoughthe water and the ice are both at the same temperature.Holy moley ! There's another one. If you pump thermal energy into a sample ofgas AND let the gas expand at the same time, you can adjust things so thatthe temperature remains constant.
temperature. Temperature is a measure of the average kinetic energy of the particles in a substance.
Thermal energy and temperature are related but not the same. Temperature is a measure of the average kinetic energy of the particles in a substance, while thermal energy is the total kinetic energy of all the particles in a substance. In other words, temperature is a single value, while thermal energy is a total amount of energy.
For example, when ice is melting, the absorbed thermal energy is used to change the phase of the substance - a type of potential energy.
The temperature of a substance can remain the same during absorbing thermal energy if the substance is undergoing a phase change, such as melting or boiling. During a phase change, the absorbed thermal energy goes into breaking intermolecular bonds rather than increasing the temperature. Once the phase change is complete, the temperature will resume rising as the substance absorbs more thermal energy.
That happens, for example, when ice melts. In this case, energy is spent to break the bonds between the water molecules. In other words, the kinetic energy (movement) of the water molecules doesn't increase, but its potential energy does.
The substance could be undergoing a phase change, such as melting or boiling, where the absorbed thermal energy is being used to break intermolecular forces rather than increase temperature. Additionally, the substance could be acting as a reservoir for the thermal energy, buffering the temperature change by absorbing it without changing its own temperature until it reaches its heat capacity limit. Finally, the substance could be releasing an equivalent amount of energy through other means, such as radiation or convection, balancing out the absorbed thermal energy and maintaining a constant temperature.
Rubbing alcohol evaporating is absorbing energy. As the rubbing alcohol transitions from a liquid to a vapor state, it needs to overcome the intermolecular forces holding the liquid together, which requires energy input.
Intensive properties remain the same with a change in the amount of a substance - for example: temperature and density Extensive properties do not remain the same with a change in the amount of a substance - for example: mass and volume
Substance in the material Remain the same
That can't happen, unless the object is losing thermal energy out the back doorat the same rate as it's absorbing thermal energy in front where you're watching.There's no getting around the rules:More thermal energy inside = higher temperature.Less thermal energy inside = lower temperature.Excuse me, I just thought of the exception ... that's when the substance is changingstate, between solid / liquid / gas.The reason is that, for example, it takes more thermal energy for the moleculesof water to act like a liquid than it takes for them to act like a solid, even thoughthe water and the ice are both at the same temperature.Holy moley ! There's another one. If you pump thermal energy into a sample ofgas AND let the gas expand at the same time, you can adjust things so thatthe temperature remains constant.
it will remain the same
At a unique temperature, called the "freezing point", for each pure substance at a constant pressure, a solid form of the substance can change from solid to liquid phase by absorbing heat energy from its environment without raising the temperature of the substance, and, at the same temperature and pressure, a liquid phase of the same substance, can solidify without changing its temperature if it can transfer heat energy to the external environment.
Yes
Substance in the material Remain the same