You can add vectors graphically (head-to-foot). Mathematically, you can add the individual components. For example, in two dimensions, separate the vector into x and y components, and add the x-component for both vectors; the same for the y-component.
Here it may be useful to note that scientific calculator have a special function to convert from polar to rectangular coordinates, and vice-versa. If you RTFM (the calculator manual, in this case), it may help a lot - a vector may be given in polar coordinates (a length and an angle); using this special function on the calculator can do the conversion to rectangular (x- and y-components) really fast.
Mainly because they aren't scalar quantities. A vector in the plane has two components, an x-component and a y-component. If you have the x and y components for each vector, you can add them separately. This is very similar to the addition of scalar quantities; what you can't add directly, of course, is their lengths. Similarly, a vector in space has three components; you can add each of the components separately.
Yes, scalar quantities can be added, as long as they are the same dimension and you keep units straight. For example you cannot add cubic meters to square meters. But (especially in the imperial system) pounds and ounces, or feet and inches are added, and displayed in that fashion. Minutes and seconds is another.
No, scalar can be added together directly, whereas vectors can only add their separate components together.
adding vectorsTo add two vectors, s+z, simply move the vector z to the end of the vector s.subtracting vectorsTo find the magnitude and direction of the difference between two vectors, s-z, simply draw a vector from z to s
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
Mainly because they aren't scalar quantities. A vector in the plane has two components, an x-component and a y-component. If you have the x and y components for each vector, you can add them separately. This is very similar to the addition of scalar quantities; what you can't add directly, of course, is their lengths. Similarly, a vector in space has three components; you can add each of the components separately.
It is not possible the addition of scalars as well as vectors because vector quantities are magnitude as well as direction and scalar quantities are the only magnitude; they have no directions at all. Addition is possible between scalar to scalar and vector to vector. Under some circumstances, you may be able to treat scalar quantities as being along some previously undefined dimension of a vector quantity, and add them that way. For example, you can treat time as a vector along the t-axis and add it to an xyz position vector in 3-space to come up with a four-dimensional spacetime vector.
Yes, scalar quantities can be added, as long as they are the same dimension and you keep units straight. For example you cannot add cubic meters to square meters. But (especially in the imperial system) pounds and ounces, or feet and inches are added, and displayed in that fashion. Minutes and seconds is another.
Scalar quantities - quantities that only include magnitude Vector quantities - quantities with both magnitude and direction
No, scalar can be added together directly, whereas vectors can only add their separate components together.
adding vectorsTo add two vectors, s+z, simply move the vector z to the end of the vector s.subtracting vectorsTo find the magnitude and direction of the difference between two vectors, s-z, simply draw a vector from z to s
Ion Know ... You Tell Me
No, a scalar quantity cannot be the product of two vector quantities. Scalar quantities have only magnitude, while vector quantities have both magnitude and direction. When two vectors are multiplied, the result is a vector, not a scalar.
Yes, it is a vector quantity.
It is necessary to know the magnitude and the direction of the vector.
If a vector is given in component form <x1,y1> and <x2,y2>, then you add or subtract the corresponding components. <x1,y1>+<x2,y2>=<x1+x2,y1+y2>
Scalar quantities are defined as quantities that have only a mganitude. Vector quantities have magnitude and direction. Some example of this include Scalar Vector Mass Weight length Displacement Speed Velocity Energy Acceleration