Because of the conservation of rotational momentum. As a stars core collapses, it retains the original rotational velocity. As a pulsar or neutron star's original size was in the region of 60,000 time greater that it's current form, the rotational speed is multiplied by this factor.
Maintaining the rotational momentum requires the star to spin faster.
It can spin pretty fast. On impact, it can break a lot of things, including the yoyo.
A neutron star is unimaginably dense. It contains the mass of the Sun, but has that mass squeezed into a ball perhaps 20km (12 1/2 miles) across. Further, neutron stars are so small that they can spin very rapidly, many times per second or faster. When they spin they emit electromagnetic radiation which can appear as flashes from earth. If the magnetic pole of the neutron star is "pointed" [See related link - Pictorial of pulsar] towards Earth, they are called pulsars, as they "pulse" as they spin and can be detected. The flashes produced by the pulsars are detected as the electro magnetic radio waves caught up by the radio telescopes
The favored explanation for the rapid spin rate of millisecond pulsars is that they are formed through the process of accretion from a binary companion. As material falls onto the pulsar from the companion star, its rotation speed increases due to conservation of angular momentum. This process can ultimately accelerate the pulsar to millisecond spin periods.
Pulsars are formed from the cores of massive stars that have exploded in supernovae. During the collapse, their magnetic fields get amplified to extremely high levels due to conservation of magnetic flux. This results in pulsars having large magnetic fields.
Not all neutron stars are seen as pulsars because pulsars emit beams of radiation that are only visible if they are pointed towards Earth. If a neutron star's beams are not aligned with our line of sight, it will not appear as a pulsar.
There is no such bowling style as 'fast in spin' or 'fast out spin in'.
Because of the conservation of rotational momentum. As a stars core collapses, it retains the original rotational velocity. As a pulsar or neutron star's original size was in the region of 60,000 time greater that it's current form, the rotational speed is multiplied by this factor. Maintaining the rotational momentum requires the star to spin faster.
because it does haha!
believed to be the result of mass transfer from a companion that increases the spin of the pulsar.
Sonic can spin because he runs so fast it looks like he is spinning.
Pulsars are located every where around the universe keep in mind pulsars are neutron stars so that means they were formed by large stars that have aged and died out
Fast
Fast Japanese Spin Cycle was created in 1994.
No they spin very very fast
they spin and move fast
The Pulsars ended in 2000.
The Pulsars was created in 1994.