answersLogoWhite

0

khanacademy.org

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Physics

What is the translational acceleration formula and how is it used to calculate the acceleration of an object in linear motion?

The translational acceleration formula is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This formula is used to calculate the acceleration of an object in linear motion by finding the change in velocity over time.


How can one determine the linear acceleration of an object?

To determine the linear acceleration of an object, you can use the formula: acceleration change in velocity / time taken. This means you calculate the difference in velocity of the object over a specific time period to find its acceleration.


What is the linear acceleration equation and how is it used to calculate the acceleration of an object moving in a straight line?

The linear acceleration equation is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the acceleration of an object moving in a straight line by finding the change in velocity over time.


What is the relationship between linear and angular acceleration in rotational motion?

In rotational motion, linear acceleration and angular acceleration are related. Linear acceleration is the rate of change of linear velocity, while angular acceleration is the rate of change of angular velocity. The relationship between the two is that linear acceleration and angular acceleration are directly proportional to each other, meaning that an increase in angular acceleration will result in a corresponding increase in linear acceleration.


What is the relationship between the angular acceleration formula and linear acceleration in rotational motion?

The angular acceleration formula is related to linear acceleration in rotational motion through the equation a r, where a is linear acceleration, r is the radius of rotation, and is angular acceleration. This equation shows that linear acceleration is directly proportional to the radius of rotation and angular acceleration.

Related Questions

What is the translational acceleration formula and how is it used to calculate the acceleration of an object in linear motion?

The translational acceleration formula is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This formula is used to calculate the acceleration of an object in linear motion by finding the change in velocity over time.


How can one determine the linear acceleration of an object?

To determine the linear acceleration of an object, you can use the formula: acceleration change in velocity / time taken. This means you calculate the difference in velocity of the object over a specific time period to find its acceleration.


What is the linear acceleration equation and how is it used to calculate the acceleration of an object moving in a straight line?

The linear acceleration equation is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the acceleration of an object moving in a straight line by finding the change in velocity over time.


Why do you calculate center of gravity?

If a force acts in a direction which passes through the centre of gravity of the object then it will impart no rotational acceleration; only linear acceleration.


What is the relationship between linear and angular acceleration in rotational motion?

In rotational motion, linear acceleration and angular acceleration are related. Linear acceleration is the rate of change of linear velocity, while angular acceleration is the rate of change of angular velocity. The relationship between the two is that linear acceleration and angular acceleration are directly proportional to each other, meaning that an increase in angular acceleration will result in a corresponding increase in linear acceleration.


What is the relationship between the angular acceleration formula and linear acceleration in rotational motion?

The angular acceleration formula is related to linear acceleration in rotational motion through the equation a r, where a is linear acceleration, r is the radius of rotation, and is angular acceleration. This equation shows that linear acceleration is directly proportional to the radius of rotation and angular acceleration.


How does the angular acceleration of a rotating object relate to its linear acceleration?

Angular acceleration and linear acceleration are related through the radius of the rotating object. The angular acceleration is directly proportional to the linear acceleration and inversely proportional to the radius of the object. This means that as the linear acceleration increases, the angular acceleration also increases, but decreases as the radius of the object increases.


How is angular acceleration related to linear acceleration in a rotating object?

Angular acceleration and linear acceleration are related in a rotating object through the equation a r, where a is linear acceleration, r is the radius of the object, and is the angular acceleration. This equation shows that the linear acceleration of a point on a rotating object is directly proportional to the angular acceleration and the distance from the center of rotation.


How does linear acceleration relate to angular acceleration in rotational motion?

Linear acceleration and angular acceleration are related in rotational motion through the concept of tangential acceleration. In rotational motion, linear acceleration is the rate of change of linear velocity, while angular acceleration is the rate of change of angular velocity. Tangential acceleration is the component of linear acceleration that is tangent to the circular path of rotation, and it is related to angular acceleration through the equation at r , where at is the tangential acceleration, r is the radius of the circular path, and is the angular acceleration. This relationship shows that as the angular acceleration increases, the tangential acceleration also increases, leading to changes in the linear velocity of the rotating object.


What is the equation for linear acceleration and how is it used to calculate the rate of change in velocity of an object?

The equation for linear acceleration is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This equation is used to calculate the rate of change in velocity of an object by finding the difference between the final and initial velocities, and dividing that by the time taken for the change to occur.


What is the relationship between linear acceleration and angular acceleration in a rotating object?

Linear acceleration and angular acceleration are related in a rotating object through the concept of tangential acceleration. As a rotating object speeds up or slows down, it experiences linear acceleration in the direction of its motion, which is directly related to the angular acceleration causing the rotation. In simple terms, as the object rotates faster or slower, its linear acceleration increases or decreases accordingly.


What is the formula for linear acceleration and how is it used to calculate the rate of change of velocity in a straight line motion?

The formula for linear acceleration is a (vf - vi) / t, where a is acceleration, vf is final velocity, vi is initial velocity, and t is time. This formula is used to calculate the rate of change of velocity in a straight line motion by finding the difference between the final and initial velocities and dividing by the time taken to change velocity.