In a series circuit:
Add up the individual resistances of each component.
The sum is the effective (total) resistance.
In a parallel circuit:
-- Take the reciprocal of each individual element.
-- Add up all the reciprocals.
-- Take the reciprocal of the sum.
The answer is the effective (total) resistance.
If you have a complex circuit with both series and parallel sections in it:
-- First, find the effective resistance of each parallel section, and replace each one
with a single equivalent resistance.
-- Now you're left with only a series circuit to solve, by summing the individual resistances.
-- If the excitation source is AC, then the steady state of the circuit depends on the voltage, frequency, and waveform (harmonic content) of the source. -- If the excitation source is DC, then the steady state current in a series circuit is zero. DC doesn't pass through a capacitor.
That entirely depends on whether the resistances are in series or in parallel with each other. Ohm's law states that I=V/R. i.e. current = voltage/resistance. If you know the current and voltage you can find the resistance. You can use algebra to rearrange the formula for R and get that R= V/I. Resistance = voltage/current.
Here are some series-parallel circuits practice problems you can solve to improve your understanding of electrical circuits: Calculate the total resistance in a circuit with two resistors in series and one resistor in parallel. Determine the current flowing through each resistor in a circuit with three resistors in parallel. Find the voltage drop across each resistor in a circuit with two resistors in series and one resistor in parallel. Calculate the total power dissipated in a circuit with resistors connected in both series and parallel configurations. Determine the equivalent resistance of a complex circuit with multiple resistors connected in series and parallel. Solving these practice problems will help you develop a better understanding of series-parallel circuits and improve your skills in analyzing and solving electrical circuit problems.
6
A parallel circuit is different in many ways from a series circuit: 1. In parallel, the voltage across all the devices connected is the same. 2. If a fault occurs in any device connected in parallel combo, then it has no effect on the operation of the other device. 3. In series circuit the current flowing through all the devices is the same while in case of the parallel one the voltage across all the devices is same.
A: If you know the total resistance and total voltage then you know total current flow for the circuit, this current will be same for every resistor in series however the voltage drop will change for each resistor . So measuring the voltage drop across the resistor in question and divide by the total current will give you the resistor value.
when A resistance is connected across the supply voltage, total input vooltage will be drop in the resistance when the resistances are connected across the supply voltage, total input vooltage will be devidedacross the resistances. IF R value will be high ,drop also high. IF R value wll be low ,voltage drop will be less.
Power dissipated by the entire series circuit = (voltage between its ends)2 / (sum of resistances of each component in the circuit). Power dissipated by one individual component in the series circuit = (current through the series circuit)2 x (resistance of the individual component).
The rule for voltage in a series circuit is that the signed sum of the voltage drops around the circuit add up to zero. This is Kirchoff's voltage law. Take a simple circuit of a 1.5V battery and light bulb in series with each other. Starting at the battery negative terminal, the voltage from negative to positive is +1.5V. Starting at the top of the light bulb (the end connected to the battery positive terminal), the voltage from top to bottom is -1.5V. The two drops (rises, in this case), +1.5V and -1.5V add up to zero. Note that the simple example above, is also a parallel circuit. The implication is that elements of a parallel circuit have the same voltage across them. Lets add a second bulb in series with the first. The voltage going up across the battery is still +1.5V, while the voltage going down across each bulb is -0.75V. Again, the sum is zero. You can take this to any level of complexity during circuit analysis. Find the series or parallel elements and calculate drops around the series part or find the equivalent voltages across the parallel parts, combine that with other techniques such as Kirchoff's current law, and Norton and Thevanin equivalents, and you can analyze any circuit. ANSWER: In a series circuit since the current remains the same for every items the voltage will vary according to ohm law
Voltage will be same in all branches. Voltage= Current * Total Resistance
If you are looking for the resistance of each resistor in either a series circuit or a parallel circuit you must measure the current I and the voltage V for each resistor. Then calculate its resistance using Ohms Law R = V / I where I = current (Amps), V = voltage (Volts) and R= resistance (Ohms).
-- If the excitation source is AC, then the steady state of the circuit depends on the voltage, frequency, and waveform (harmonic content) of the source. -- If the excitation source is DC, then the steady state current in a series circuit is zero. DC doesn't pass through a capacitor.
the source voltage and the total impedanceAnswerA 'complex circuit' describes a category of circuit that is neither series, parallel, nor series-parallel. A relatively-simple example of a complex circuit is a Wheatstone Bridge. You cannot analyse or resolve a complex circuit using the techniques used to analyse and resolve series, parallel, or series-parallel circuit. Instead you must use one or other of the various electrical theorems. For example, to determine the currents flowing in a Wheatstone Bridge circuit, you could use Kirchhoff's Laws or Thevenin's Theorem.
Current in a parallel circuit divides between the branches, depending on the relative impedance of each branch. Kirchoff's current law, which can be used to analyze that current, states simply that the sum of the currents entering and leaving a node, properly signed, always add up to zero.Current in a series circuit is the same at every point in the circuit. This is a consequence of Kirchoff's current law, because a node in a series circuit consists of only two conductors, and the sum of the currents at that node must be zero. By implication, then, all nodes in a series circuit must have the same current.Not asked, but discussed due to completeness, is Kirchoff's voltage law, which states that the signed sum of the voltage drops around a series circuit always add up to zero. A consequence of this is that the voltage across elements of a parallel circuit must be the same.
That entirely depends on whether the resistances are in series or in parallel with each other. Ohm's law states that I=V/R. i.e. current = voltage/resistance. If you know the current and voltage you can find the resistance. You can use algebra to rearrange the formula for R and get that R= V/I. Resistance = voltage/current.
Here are some series-parallel circuits practice problems you can solve to improve your understanding of electrical circuits: Calculate the total resistance in a circuit with two resistors in series and one resistor in parallel. Determine the current flowing through each resistor in a circuit with three resistors in parallel. Find the voltage drop across each resistor in a circuit with two resistors in series and one resistor in parallel. Calculate the total power dissipated in a circuit with resistors connected in both series and parallel configurations. Determine the equivalent resistance of a complex circuit with multiple resistors connected in series and parallel. Solving these practice problems will help you develop a better understanding of series-parallel circuits and improve your skills in analyzing and solving electrical circuit problems.
The total resistance of resistors in series is simply the sum of the resistance values of those resistors. If the resistors are identical, then you can multiply the resistance of one of them by the number of resistors in the circuit.