Air resistance increases as an object accelerates due to greater relative velocity, causing a force opposite to the direction of motion. The shape of an object can influence air resistance; streamlined shapes like aerofoils reduce resistance compared to shapes with sharp angles. Overall, air resistance can slow down acceleration by counteracting the applied force on the object.
The internal composition or material of an object does not affect air resistance. Air resistance is mainly determined by an object's size, shape, and speed when moving through air.
The feature characteristic of an object that does not affect air resistance is the object's mass. Air resistance is determined by the object's shape, size, and speed through the air, but not its mass.
Changing the shape of an object can affect friction and air resistance. For friction, the surface area in contact with another surface can increase or decrease, altering the friction force. For air resistance, a more streamlined shape will experience less resistance compared to a less streamlined shape due to differences in how air flows around the object.
The factors that affect the amount of air resistance acting on an object are the speed of the object, the surface area exposed to the air, and the shape of the object. A faster object experiences more air resistance than a slower one, a larger surface area increases air resistance, and a streamlined shape reduces air resistance.
The shape of an object does not affect its velocity because velocity is determined solely by the object's speed and direction of motion. The shape of an object may affect other factors such as air resistance or aerodynamics, which can influence how quickly the object slows down or changes direction, but it does not directly affect its velocity.
The internal composition or material of an object does not affect air resistance. Air resistance is mainly determined by an object's size, shape, and speed when moving through air.
The feature characteristic of an object that does not affect air resistance is the object's mass. Air resistance is determined by the object's shape, size, and speed through the air, but not its mass.
Changing the shape of an object can affect friction and air resistance. For friction, the surface area in contact with another surface can increase or decrease, altering the friction force. For air resistance, a more streamlined shape will experience less resistance compared to a less streamlined shape due to differences in how air flows around the object.
The factors that affect the amount of air resistance acting on an object are the speed of the object, the surface area exposed to the air, and the shape of the object. A faster object experiences more air resistance than a slower one, a larger surface area increases air resistance, and a streamlined shape reduces air resistance.
Fluid density, relative velocity, and object shape affect air resistance.
The shape of an object does not affect its velocity because velocity is determined solely by the object's speed and direction of motion. The shape of an object may affect other factors such as air resistance or aerodynamics, which can influence how quickly the object slows down or changes direction, but it does not directly affect its velocity.
shape, size, and speed
Speed, shape and frontal cross-section. Viscosity, texture, friction, gravity, velocity, size, and shape can all affect air resistance.
shape, size, and speed
The shape of the object and the density of the gas that the object is falling through.
The shape of the object, its surface area, and its speed through the air will affect air resistance. Objects with a more streamlined shape and smaller surface area will experience less air resistance than those with bulkier shapes and larger surface areas. Additionally, objects moving at higher speeds will experience greater air resistance.
Speed, shape and frontal cross-section. Viscosity, texture, friction, gravity, velocity, size, and shape can all affect air resistance.