Well, first gravity makes it launch, second it makes the ball start to fall down when it's launched.
Yes, weight can affect how far a catapult launches a tennis ball. A heavier weight in the catapult can generate more force and potential energy, which can result in the tennis ball being launched further. However, the weight must be balanced and optimized to ensure the catapult operates efficiently and effectively.
Factors that can affect the value of the horizontal velocity of a ball include the initial speed at which the ball was thrown or kicked, the angle at which it was launched, air resistance, and any external forces acting on the ball such as friction or gravity.
Yes, gravity affects a soccer ball when it falls. The force of gravity causes the ball to accelerate towards the ground at a rate of 9.8 m/s^2. This acceleration causes the ball to pick up speed as it falls.
Air resistance can affect the trajectory of a projectile launched by a catapult by slowing it down as it travels through the air. The greater the air resistance, the shorter the distance the object will travel. Designing a catapult with aerodynamic components can help minimize the impact of air resistance on the projectile's flight path.
The force of gravity affects the speed of a ball falling by pulling it downward, causing it to accelerate as it falls. The greater the force of gravity, the faster the ball will fall.
Yes, weight can affect how far a catapult launches a tennis ball. A heavier weight in the catapult can generate more force and potential energy, which can result in the tennis ball being launched further. However, the weight must be balanced and optimized to ensure the catapult operates efficiently and effectively.
Factors that can affect the value of the horizontal velocity of a ball include the initial speed at which the ball was thrown or kicked, the angle at which it was launched, air resistance, and any external forces acting on the ball such as friction or gravity.
When the ball is in the air, gravity brings the ball back down.
Yes, gravity affects a soccer ball when it falls. The force of gravity causes the ball to accelerate towards the ground at a rate of 9.8 m/s^2. This acceleration causes the ball to pick up speed as it falls.
Air resistance can affect the trajectory of a projectile launched by a catapult by slowing it down as it travels through the air. The greater the air resistance, the shorter the distance the object will travel. Designing a catapult with aerodynamic components can help minimize the impact of air resistance on the projectile's flight path.
The force of gravity affects the speed of a ball falling by pulling it downward, causing it to accelerate as it falls. The greater the force of gravity, the faster the ball will fall.
The ball will not be affected by drag. Only gravity will affect its trajectory.
Air resistance, gravity, friction with the ground, and the impact force from a collision with another object are all forces that can affect the motion of a ball.
The maximum potential energy acquired by the metal ball from the catapult is a result of the stored energy when the ball is at its highest point of elevation in the launch trajectory. As the ball gains height, its potential energy increases due to its position relative to the ground. At the peak of the trajectory, the ball has its highest potential energy before it begins to fall back down due to gravity.
Yes, the pullback angle of a catapult can affect the distance a ball could go. A greater pullback angle typically increases the applied force on the projectile, resulting in a longer distance traveled. However, the optimal angle depends on various factors, such as the launch velocity and air resistance.
The movement of a ball is influenced by factors such as its initial velocity, angle of launch, air resistance, and gravity. These factors determine the trajectory and speed of the ball. For example, a ball launched at a higher velocity and angle will travel further and faster than one launched at a lower velocity and angle. Additionally, air resistance can slow down the ball, affecting its speed and trajectory. Overall, the movement of a ball is a complex interplay of various factors that ultimately determine its trajectory and speed.
travel horizontally