Because high and low momentum = high and low acceleration because it depends. =]
Inertia is an object's resistance to changes in its motion, while momentum is the product of an object's mass and velocity. Inertia determines how difficult it is to start, stop, or change the direction of an object's motion, while momentum determines how difficult it is to stop an object once it is in motion. Both inertia and momentum affect the motion of an object by influencing how it responds to external forces and changes in its velocity.
Momentum is the measure of an object's motion, taking into account its mass and velocity. Inertia, on the other hand, is an object's resistance to changes in its motion. Momentum affects how easily an object can change its motion, while inertia determines how difficult it is to change the object's state of motion.
You can change the amount of momentum an object has by changing its mass, velocity, or direction of motion. Increasing the object's mass or velocity will increase its momentum, while changing its direction will affect the direction of its momentum.
The change in momentum over time affects the motion of an object by determining how quickly the object speeds up or slows down. If the momentum changes rapidly, the object will accelerate or decelerate quickly. If the momentum changes slowly, the object will change its speed more gradually.
Friction does not affect inertia, but it affects momentum. Momentum is the product of the mass of an object and its speed. Friction forces, if present, will always act to decrease the momentum of a moving object.
Inertia is an object's resistance to changes in its motion, while momentum is the product of an object's mass and velocity. Inertia determines how difficult it is to start, stop, or change the direction of an object's motion, while momentum determines how difficult it is to stop an object once it is in motion. Both inertia and momentum affect the motion of an object by influencing how it responds to external forces and changes in its velocity.
Momentum is the measure of an object's motion, taking into account its mass and velocity. Inertia, on the other hand, is an object's resistance to changes in its motion. Momentum affects how easily an object can change its motion, while inertia determines how difficult it is to change the object's state of motion.
You can change the amount of momentum an object has by changing its mass, velocity, or direction of motion. Increasing the object's mass or velocity will increase its momentum, while changing its direction will affect the direction of its momentum.
The change in momentum over time affects the motion of an object by determining how quickly the object speeds up or slows down. If the momentum changes rapidly, the object will accelerate or decelerate quickly. If the momentum changes slowly, the object will change its speed more gradually.
Friction does not affect inertia, but it affects momentum. Momentum is the product of the mass of an object and its speed. Friction forces, if present, will always act to decrease the momentum of a moving object.
An object does not have momentum when it is stationary or not in motion. Momentum is a product of an object's mass and velocity, so if either of these values is zero, the object's momentum will also be zero.
motion or momentum Motion for A+
Momentum affects distance by influencing the object's ability to overcome resistance or friction and continue moving forward. An object with more momentum will typically travel further before coming to a stop compared to an object with less momentum. This is because momentum is a measure of an object's motion, and the greater the momentum, the more force it can exert over a distance.
Yes, an object with mass will have momentum. Momentum is a vector quantity that describes the motion of an object based on its mass and velocity. The momentum of an object is the product of its mass and velocity.
The key dimensions of momentum are mass and velocity. Momentum is the product of an object's mass and its velocity. The greater the mass or velocity of an object, the greater its momentum. Momentum influences the motion of an object by determining how difficult it is to stop or change the object's direction. Objects with higher momentum are harder to stop or change their course compared to objects with lower momentum.
Inertia of motion is the resistance mass has to motion. It also is the resistance in change in momentum. Momentum includes two things: velocity and direction. When an object changes its velocity, the momentum of the object resists the change. Also, when an object does change its velocity, its momentum is directly changed. In general, the inertia of motion is matter's unwillingness to change velocity or momentum.
The mass and velocity of an object are two factors that affect its momentum. An object with higher mass or greater velocity will have greater momentum.